Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 10

Question Number 207949    Answers: 2   Comments: 0

Find the value of : 𝛀 = ∫_0 ^( (𝛑/2)) (( dx)/(sin^6 x + cos^6 x)) = ? −−−−−−−−−

Findthevalueof:Ω=0π2dxsin6x+cos6x=?

Question Number 207938    Answers: 1   Comments: 0

what is the area bounded by the curve y=x(x−2)(x−5) and the x axis?

whatistheareaboundedbythecurvey=x(x2)(x5)andthexaxis?

Question Number 207924    Answers: 0   Comments: 0

∫f(x)g(x)dx=Σ_(n=0) ^∞ (−1)^n lim_(h→0) (1/h^n ) Σ_(i=o) ^n [ (−1)^i (((n!)/(i!(n−i)!)))f(x+(n−i)h)] (1/(n!))∫_a ^x (x−t)^n g(t)dt prove that right its a relation that i have derrived

f(x)g(x)dx=n=0(1)nlimh01hnni=o[(1)i(n!i!(ni)!)f(x+(ni)h)]1n!xa(xt)ng(t)dtprovethatrightitsarelationthatihavederrived

Question Number 207906    Answers: 1   Comments: 0

help ∫_1 ^( ∞) x^(−ln(x)) dx

help1xln(x)dx

Question Number 207878    Answers: 2   Comments: 0

Question Number 207857    Answers: 1   Comments: 0

∫xtan^(−1) xdx

xtan1xdx

Question Number 207789    Answers: 1   Comments: 0

∀r∈R: H_r =∫_0 ^1 ((t^r −1)/(t−1))dt H_(r+2) −H_r =1 r=?

rR:Hr=10tr1t1dtHr+2Hr=1r=?

Question Number 207753    Answers: 1   Comments: 0

Question Number 207707    Answers: 0   Comments: 0

∫_0 ^(+∞) ((sin^2 (x))/(sin^2 (x)+(xcos (x)+sin (x))^2 ))d(x)

+0sin2(x)sin2(x)+(xcos(x)+sin(x))2d(x)

Question Number 207652    Answers: 1   Comments: 0

∫_0 ^1 log(1+x^3 )dx = ?and ∫_0 ^1 log (1+x^4 )dx = ? and if possible then find the value of p p = ∫_0 ^1 log(1+x^n )dx = ? n∈N

01log(1+x3)dx=?and01log(1+x4)dx=?andifpossiblethenfindthevalueofpp=01log(1+xn)dx=?nN

Question Number 207582    Answers: 2   Comments: 0

∫_0 ^π ln(sinx)dx=−πln2 ∫_0 ^1 lnΓ(x)dx = ln(2π)

0πln(sinx)dx=πln201lnΓ(x)dx=ln(2π)

Question Number 207565    Answers: 2   Comments: 0

find ∫_0 ^(π/2) (x^2 /(tan^2 x))dx

find0π2x2tan2xdx

Question Number 207424    Answers: 0   Comments: 0

f_n (x):=∫e^((2x)/3) ((cos(x))/( (cos(x)+sin(x))^(n/3) ))dx=...? for n=1, i found f_1 (x)=(3/4)e^((2x)/3) (cos(x)+sin(x))^(2/3) + C is there any ideas for a general case or the case n=2?

fn(x):=e2x3cos(x)(cos(x)+sin(x))n3dx=...?forn=1,ifoundf1(x)=34e2x3(cos(x)+sin(x))23+Cisthereanyideasforageneralcaseorthecasen=2?

Question Number 207383    Answers: 0   Comments: 1

∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx

ln(x2+sin(sin(ex)))x+tan(ln(x))dx

Question Number 207382    Answers: 1   Comments: 0

Question Number 207352    Answers: 1   Comments: 3

calculate: ∫_(Π/4) ^(Π/2) ⌊cot(x)⌋ dx

calculate:Π4Π2cot(x)dx

Question Number 207354    Answers: 0   Comments: 4

Question Number 207359    Answers: 1   Comments: 0

∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx

ln(x2+sin(sin(ex)))x+tan(ln(x))dx

Question Number 207099    Answers: 1   Comments: 0

Question Number 207054    Answers: 1   Comments: 0

Ω_α =∫_0 ^1 x^α (√(−xln x)) dx=?

Ωα=10xαxlnxdx=?

Question Number 206962    Answers: 2   Comments: 0

∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))dx=?

101x11x+1+1xdx=?

Question Number 206892    Answers: 1   Comments: 0

find ∫_0 ^1 (√(1+(√(1+x^2 ))))dx

find011+1+x2dx

Question Number 206890    Answers: 0   Comments: 1

can some one find the exact value of Σ_(n=0) ^∞ (1/((n!)^2 ))

cansomeonefindtheexactvalueofn=01(n!)2

Question Number 206858    Answers: 2   Comments: 0

prove that H_n =∫_0 ^1 ((t^n −1)/(t−1))dt

provethatHn=10tn1t1dt

Question Number 206830    Answers: 0   Comments: 0

c = (√((∫_a_0 ^a_1 (√(1+[f′(x)]^2 ))dx)^2 +(∫_b_0 ^b_1 (√(1+[f′(x)]^2 ))dx)^2 )) c = (√(L_1 ^2 +L_2 ^2 ))

c=(a0a11+[f(x)]2dx)2+(b0b11+[f(x)]2dx)2c=L12+L22

Question Number 206829    Answers: 0   Comments: 1

∮(x/(x+2))dx^2 is wrong?

xx+2dx2iswrong?

  Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com