Question and Answers Forum |
IntegrationQuestion and Answers: Page 10 |
Find the value of : 𝛀 = ∫_0 ^( (𝛑/2)) (( dx)/(sin^6 x + cos^6 x)) = ? −−−−−−−−− |
what is the area bounded by the curve y=x(x−2)(x−5) and the x axis? |
∫f(x)g(x)dx=Σ_(n=0) ^∞ (−1)^n lim_(h→0) (1/h^n ) Σ_(i=o) ^n [ (−1)^i (((n!)/(i!(n−i)!)))f(x+(n−i)h)] (1/(n!))∫_a ^x (x−t)^n g(t)dt prove that right its a relation that i have derrived |
help ∫_1 ^( ∞) x^(−ln(x)) dx |
![]() |
∫xtan^(−1) xdx |
∀r∈R: H_r =∫_0 ^1 ((t^r −1)/(t−1))dt H_(r+2) −H_r =1 r=? |
![]() |
∫_0 ^(+∞) ((sin^2 (x))/(sin^2 (x)+(xcos (x)+sin (x))^2 ))d(x) |
∫_0 ^1 log(1+x^3 )dx = ?and ∫_0 ^1 log (1+x^4 )dx = ? and if possible then find the value of p p = ∫_0 ^1 log(1+x^n )dx = ? n∈N |
∫_0 ^π ln(sinx)dx=−πln2 ∫_0 ^1 lnΓ(x)dx = ln(2π) |
find ∫_0 ^(π/2) (x^2 /(tan^2 x))dx |
f_n (x):=∫e^((2x)/3) ((cos(x))/( (cos(x)+sin(x))^(n/3) ))dx=...? for n=1, i found f_1 (x)=(3/4)e^((2x)/3) (cos(x)+sin(x))^(2/3) + C is there any ideas for a general case or the case n=2? |
∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx |
![]() |
calculate: ∫_(Π/4) ^(Π/2) ⌊cot(x)⌋ dx |
![]() |
∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx |
![]() |
Ω_α =∫_0 ^1 x^α (√(−xln x)) dx=? |
∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))dx=? |
find ∫_0 ^1 (√(1+(√(1+x^2 ))))dx |
can some one find the exact value of Σ_(n=0) ^∞ (1/((n!)^2 )) |
prove that H_n =∫_0 ^1 ((t^n −1)/(t−1))dt |
c = (√((∫_a_0 ^a_1 (√(1+[f′(x)]^2 ))dx)^2 +(∫_b_0 ^b_1 (√(1+[f′(x)]^2 ))dx)^2 )) c = (√(L_1 ^2 +L_2 ^2 )) |
∮(x/(x+2))dx^2 is wrong? |