Question and Answers Forum |
IntegrationQuestion and Answers: Page 100 |
∫(x−1)^(x+1) dx |
![]() |
∫_0 ^(π/2) ((√(sin (x)))+(√(cos (x))))dx |
![]() |
![]() |
∫_0 ^∞ ((log x)/(1+x^2 +x^4 )) dx=...? |
....advanced calculus... evaluate : 𝛗=∫_0 ^( ∞) xe^(−2x) ln(x)dx=??? |
∫_(−∞) ^∞ ((x^2 cos (px+q))/(x^2 +(p+q)^2 ))dx |
I=∫ (dx/(x(x^2 +1)^3 )) |
Ω=∫ ((sin^2 (x))/(1+sin^2 (x))) dx |
![]() |
Find the voloume bounded by z=(√(x^2 +y^2 )) and the plane y+z=3 |
∫_0 ^(π/2) (dx/(1+sin x)) →diverges or converges? |
.... nice calculus.... prove that :: Σ_(n=1) ^∞ (((−1)^n ln(n))/n)=γln(2)−(1/2)ln^2 (2) |
∫ ((x cosh x)/((sinh x)^2 )) dx |
![]() |
Given ∫_a ^( b) ((x^2 −3x)/(∣x−3∣)) dx = ((11)/2) where { ((a<3<b)),((a+2b=8)) :} Find ∫_a ^b ∣x∣ dx. |
![]() |
∫_0 ^( ∞) (dx/((x^4 −x^2 +1)^2 )) |
I = ∫e^(cos^(−1) x) dx = ? |
∫_0 ^(π/2) ((sin(nx))/(sinx))dx |
very nice integral ∫ ((4x^3 +4x^2 +4x+3)/((x^2 +1)(x^2 +x+1)^2 )) dx? |
....advanced calculus... evaluation : 𝛗=∫_(0^( ) ) ^( ∞) ((ln(1+x))/(x(1+x^2 ))) dx solution: 𝛗=[∫_0 ^( 1) ((ln(1+x))/(x(1+x^2 )))dx=𝛗_1 ]+[∫_1 ^( ∞) ((ln(1+x))/(x(1+x^2 ))) dx=𝛗_2 ] 𝛗_2 =^(x=(1/t)) ∫_0 ^( 1) ((ln(1+(1/t)))/((1/t)(1+(1/t^2 ))))(dt/t^2 )=∫_0 ^( 1) ((tln(1+(1/t)))/(1+t^2 ))dt =∫_0 ^( 1) ((tln(1+t))/(1+t^2 ))dt−∫_0 ^( 1) ((tln(t))/(1+t^2 ))dt ∴ 𝛗=𝛗_1 +𝛗_2 =∫_0 ^( 1) ((1/x)+x)((ln(1+x))/(1+x^2 ))dx−Φ 𝛗=∫_0 ^( 1) ((ln(1+x))/x)dx−Φ=−li_2 (−1)−Φ Φ=∫_0 ^( 1) ((xln(x))/(1+x^2 ))dx=Σ_(n=0) ^∞ ∫_0 ^( 1) (−1)^n x^(2n+1) ln(x)dx =Σ_(n=0) ^∞ (−1)^n {[(x^(2n+2) /(2n+2)) ln(x)]_0 ^1 −(1/(2n+2))∫_0 ^( 1) x^(2n+1) dx} =Σ_(n=0) ^∞ (−1)^(n+1) (1/(4(n+1)^2 ))=−(1/4) Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 ) =((−1)/4) η(2)=((−π^2 )/(48)) .... ∴ 𝛗=−li_2 (−1)−Φ=(π^2 /(12))+(π^2 /(48)) 𝛗=((5π^2 )/(48)) |
Simplify ((𝚪((p/2))𝚪((1/2)))/(𝚪((p/2)+(1/2)))) |
..... nice.......calculus.... prove that :: ∫_0 ^( ∞) ((sin(2arctan((x/2))))/((x^2 +2^2 )sinh(πx)))dx=(7/8) −(π^2 /(12)) |
I= ∫ ((3x+5)/((x^2 +2x+3)^2 )) dx ? |
Pg 95 Pg 96 Pg 97 Pg 98 Pg 99 Pg 100 Pg 101 Pg 102 Pg 103 Pg 104 |