Question and Answers Forum |
IntegrationQuestion and Answers: Page 107 |
...advanced calculus... evaluate ::: Ω=∫_(0 ) ^( (1/2)) ((Arctanh(x))/x)dx=? |
∫ ((4x+5)/((x+2)(x+3)(x+4)(x+5)+1)) dx? |
∫ (((x−1)(x−2)(x−3))/((x−4)(x−5)(x−6))) dx =? |
F(x)=∫_x ^(2x) (dx/( (√(t^4 +t^2 +1)))) 1. Show that F is defined, continuous and derivable in R |
...nice calculus (I)... calculate :: Ψ=∫_0 ^( 1) {(e−1)(√(log( 1+ex−x ))) +e^x^2 }dx=? |
...nice calculus ... Evaluation of :: Φ= ∫_0 ^( 1) ln(x).arctan(x)dx solution:: note 1:: Σ_(n=1) ^∞ (((−1)^(n−1) )/(2n−1))=arctan(1)=(π/4) note 2 :: Σ_(n=1) ^∞ (((−1)^(n−1) )/n) =ln(1+1)=ln(2) note 3:: Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 ) =_(eta function) ^(Drichlet) η(2)=(π^2 /(12)) ......start....... Φ=∫_0 ^( 1) {ln(x)Σ_(n=1 ) ^∞ (((−1)^(n−1) )/(2n−1)))x^(2n−1) }dx =Σ_(n=1) ^∞ (((−1)^(n−1) )/((2n−1)))∫_0 ^( 1) ln(x)x^(2n−1) dx =Σ_(n=1 ) ^∞ (((−1)^(n−1) )/((2n−1))){[(x^(2n) /(2n))ln(x)]_0 ^1 −(1/(2n))∫_0 ^( 1) x^(2n−1) dx} =(1/4)Σ_(n=1) ^∞ (((−1)^n )/((2n−1)n^2 ))=(1/4)Σ_(n=1) ^∞ (−1)^n [((2n−(2n−1))/((2n−1)n^2 ))] =(1/2)Σ_(n=1) ^∞ (((−1)^n )/((2n−1)n)) −(1/4)Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(1/2)Σ_(n=1) ^∞ ((2(−1)^n )/(2n−1))−(1/2)Σ_(n=1) ^∞ (((−1)^n )/n)+(1/4)η(2) =((−π)/4)+(1/2)ln(2)+(π^2 /(48)) ... ...Φ=(π^2 /(48)) −(π/4) +(1/2)ln(2) ... ...m.n.july.1970... |
∫_(−1) ^( 5) (√((2x^2 −8)/x)) dx =? |
...nice calculus... φ =^(???) ∫_0 ^( ∞) (((tanh(x))/e^x )) dx |
∫ (dx/((1−x)^2 (√(1−x^2 )))) ? |
Given a function f satisfy f(−x)=3f(x). If ∫_(−1) ^( 2) f(x) dx = 2 then ∫_(−2) ^( 1) f(x)dx=? |
... nice calculus... evluate :: φ = ∫_0 ^( ∞) e^(−x^2 ) cos(x)dx=? |
∫_0 ^1 ((ln x)/(x(x^2 +1))) dx |
∫e^x (((1+sinx+cosx)/(cos^2 x))) dx |
...nice calculus... prove that:: ∫_0 ^( ∞) ((ln(1+ϕ^2 x^2 ))/(1+π^2 x^2 )) dx=ln(((π+ϕ)/π)) ϕ::= golen ratio... |
If ((sin^4 x)/2) + ((cos^4 x)/3) = (1/5) then ((sin^8 x)/8) + ((cos^8 x)/(27)) = ? |
...nice calculus... Σ_(n=0) ^∞ (1/((3n+1)ϕ^(3n+1) )) =? ϕ :: golden ratio... |
∫_0 ^( π/2) (1−sin x+sin^2 x−sin^3 x+sin^4 x−sin^5 x+...) dx =? |
θ = ∫ (1+4x^4 )e^x^4 dx |
Ω = ∫_0 ^( (1/3)) x^(2n) ln(1−x)dx |
![]() |
∫_(−π/4) ^( π/4) ((sec x)/(e^x +1)) dx |
∫ x^2 .tan^(−1) ((x/2))dx=? |
∫_(−1) ^1 ∫_0 ^(1−x) (√((x^(2/3) y−x^(5/3) y−x^(2/3) y^2 )/y^2 ))dydx |
∫(√(x^2 +4x+13))dx=?? |
... mathematical analysis... if ′′ f ′′ is Reimann integrable function on [a , b ] , then prove:: lim_(t→∞ ) {∫_a ^( b) f(x)cos(tx)dx }=0 ..Reimann−Lebesgue theorem... |
∫ (((x^4 −x)^(1/4) )/x^5 ) dx =? |
Pg 102 Pg 103 Pg 104 Pg 105 Pg 106 Pg 107 Pg 108 Pg 109 Pg 110 Pg 111 |