Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 107

Question Number 128922    Answers: 1   Comments: 0

...advanced calculus... evaluate ::: Ω=∫_(0 ) ^( (1/2)) ((Arctanh(x))/x)dx=?

...advancedcalculus...evaluate:::Ω=012Arctanh(x)xdx=?

Question Number 128900    Answers: 3   Comments: 0

∫ ((4x+5)/((x+2)(x+3)(x+4)(x+5)+1)) dx?

4x+5(x+2)(x+3)(x+4)(x+5)+1dx?

Question Number 128888    Answers: 1   Comments: 0

∫ (((x−1)(x−2)(x−3))/((x−4)(x−5)(x−6))) dx =?

(x1)(x2)(x3)(x4)(x5)(x6)dx=?

Question Number 128853    Answers: 1   Comments: 0

F(x)=∫_x ^(2x) (dx/( (√(t^4 +t^2 +1)))) 1. Show that F is defined, continuous and derivable in R

F(x)=x2xdxt4+t2+11.ShowthatFisdefined,continuousandderivableinR

Question Number 128851    Answers: 3   Comments: 2

...nice calculus (I)... calculate :: Ψ=∫_0 ^( 1) {(e−1)(√(log( 1+ex−x ))) +e^x^2 }dx=?

...nicecalculus(I)...calculate::Ψ=01{(e1)log(1+exx)+ex2}dx=?

Question Number 128841    Answers: 1   Comments: 2

...nice calculus ... Evaluation of :: Φ= ∫_0 ^( 1) ln(x).arctan(x)dx solution:: note 1:: Σ_(n=1) ^∞ (((−1)^(n−1) )/(2n−1))=arctan(1)=(π/4) note 2 :: Σ_(n=1) ^∞ (((−1)^(n−1) )/n) =ln(1+1)=ln(2) note 3:: Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 ) =_(eta function) ^(Drichlet) η(2)=(π^2 /(12)) ......start....... Φ=∫_0 ^( 1) {ln(x)Σ_(n=1 ) ^∞ (((−1)^(n−1) )/(2n−1)))x^(2n−1) }dx =Σ_(n=1) ^∞ (((−1)^(n−1) )/((2n−1)))∫_0 ^( 1) ln(x)x^(2n−1) dx =Σ_(n=1 ) ^∞ (((−1)^(n−1) )/((2n−1))){[(x^(2n) /(2n))ln(x)]_0 ^1 −(1/(2n))∫_0 ^( 1) x^(2n−1) dx} =(1/4)Σ_(n=1) ^∞ (((−1)^n )/((2n−1)n^2 ))=(1/4)Σ_(n=1) ^∞ (−1)^n [((2n−(2n−1))/((2n−1)n^2 ))] =(1/2)Σ_(n=1) ^∞ (((−1)^n )/((2n−1)n)) −(1/4)Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(1/2)Σ_(n=1) ^∞ ((2(−1)^n )/(2n−1))−(1/2)Σ_(n=1) ^∞ (((−1)^n )/n)+(1/4)η(2) =((−π)/4)+(1/2)ln(2)+(π^2 /(48)) ... ...Φ=(π^2 /(48)) −(π/4) +(1/2)ln(2) ... ...m.n.july.1970...

...nicecalculus...Evaluationof::Φ=01ln(x).arctan(x)dxsolution::note1::n=1(1)n12n1=arctan(1)=π4note2::n=1(1)n1n=ln(1+1)=ln(2)note3::n=1(1)n1n2=Drichletetafunctionη(2)=π212......start.......Φ=01{ln(x)n=1(1)n12n1)x2n1}dx=n=1(1)n1(2n1)01ln(x)x2n1dx=n=1(1)n1(2n1){[x2n2nln(x)]0112n01x2n1dx}=14n=1(1)n(2n1)n2=14n=1(1)n[2n(2n1)(2n1)n2]=12n=1(1)n(2n1)n14n=1(1)nn2=12n=12(1)n2n112n=1(1)nn+14η(2)=π4+12ln(2)+π248......Φ=π248π4+12ln(2)......m.n.july.1970...

Question Number 128826    Answers: 1   Comments: 0

∫_(−1) ^( 5) (√((2x^2 −8)/x)) dx =?

152x28xdx=?

Question Number 128797    Answers: 2   Comments: 0

...nice calculus... φ =^(???) ∫_0 ^( ∞) (((tanh(x))/e^x )) dx

...nicecalculus...ϕ=???0(tanh(x)ex)dx

Question Number 128775    Answers: 3   Comments: 0

∫ (dx/((1−x)^2 (√(1−x^2 )))) ?

dx(1x)21x2?

Question Number 128750    Answers: 1   Comments: 1

Given a function f satisfy f(−x)=3f(x). If ∫_(−1) ^( 2) f(x) dx = 2 then ∫_(−2) ^( 1) f(x)dx=?

Givenafunctionfsatisfyf(x)=3f(x).If12f(x)dx=2then21f(x)dx=?

Question Number 128736    Answers: 1   Comments: 1

... nice calculus... evluate :: φ = ∫_0 ^( ∞) e^(−x^2 ) cos(x)dx=?

...nicecalculus...evluate::ϕ=0ex2cos(x)dx=?

Question Number 128721    Answers: 0   Comments: 1

∫_0 ^1 ((ln x)/(x(x^2 +1))) dx

01lnxx(x2+1)dx

Question Number 128710    Answers: 0   Comments: 0

∫e^x (((1+sinx+cosx)/(cos^2 x))) dx

ex(1+sinx+cosxcos2x)dx

Question Number 128707    Answers: 1   Comments: 0

...nice calculus... prove that:: ∫_0 ^( ∞) ((ln(1+ϕ^2 x^2 ))/(1+π^2 x^2 )) dx=ln(((π+ϕ)/π)) ϕ::= golen ratio...

...nicecalculus...provethat::0ln(1+φ2x2)1+π2x2dx=ln(π+φπ)φ::=golenratio...

Question Number 128702    Answers: 1   Comments: 0

If ((sin^4 x)/2) + ((cos^4 x)/3) = (1/5) then ((sin^8 x)/8) + ((cos^8 x)/(27)) = ?

Ifsin4x2+cos4x3=15thensin8x8+cos8x27=?

Question Number 128680    Answers: 1   Comments: 0

...nice calculus... Σ_(n=0) ^∞ (1/((3n+1)ϕ^(3n+1) )) =? ϕ :: golden ratio...

...nicecalculus...n=01(3n+1)φ3n+1=?φ::goldenratio...

Question Number 128664    Answers: 2   Comments: 0

∫_0 ^( π/2) (1−sin x+sin^2 x−sin^3 x+sin^4 x−sin^5 x+...) dx =?

0π/2(1sinx+sin2xsin3x+sin4xsin5x+...)dx=?

Question Number 128634    Answers: 1   Comments: 0

θ = ∫ (1+4x^4 )e^x^4 dx

θ=(1+4x4)ex4dx

Question Number 128633    Answers: 2   Comments: 0

Ω = ∫_0 ^( (1/3)) x^(2n) ln(1−x)dx

Ω=013x2nln(1x)dx

Question Number 128620    Answers: 1   Comments: 0

Question Number 128610    Answers: 1   Comments: 1

∫_(−π/4) ^( π/4) ((sec x)/(e^x +1)) dx

π/4π/4secxex+1dx

Question Number 128608    Answers: 1   Comments: 0

∫ x^2 .tan^(−1) ((x/2))dx=?

x2.tan1(x2)dx=?

Question Number 128602    Answers: 1   Comments: 0

∫_(−1) ^1 ∫_0 ^(1−x) (√((x^(2/3) y−x^(5/3) y−x^(2/3) y^2 )/y^2 ))dydx

1101xx23yx53yx23y2y2dydx

Question Number 128575    Answers: 3   Comments: 3

∫(√(x^2 +4x+13))dx=??

x2+4x+13dx=??

Question Number 128570    Answers: 0   Comments: 0

... mathematical analysis... if ′′ f ′′ is Reimann integrable function on [a , b ] , then prove:: lim_(t→∞ ) {∫_a ^( b) f(x)cos(tx)dx }=0 ..Reimann−Lebesgue theorem...

...mathematicalanalysis...iffisReimannintegrablefunctionon[a,b],thenprove::limt{abf(x)cos(tx)dx}=0..ReimannLebesguetheorem...

Question Number 128542    Answers: 1   Comments: 0

∫ (((x^4 −x)^(1/4) )/x^5 ) dx =?

(x4x)1/4x5dx=?

  Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com