Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 112

Question Number 128057    Answers: 3   Comments: 0

∫_0 ^( 1) ∫_0 ^( 1) (1/(1−xy^2 )) dx dy =?

010111xy2dxdy=?

Question Number 128052    Answers: 3   Comments: 0

I = ∫ arctan (((x−2)/(x+2))) dx

I=arctan(x2x+2)dx

Question Number 128026    Answers: 0   Comments: 0

∫_(π/2) ^((2π)/3) (((arcsinhx)^2 )/(2cosx))dx

π22π3(arcsinhx)22cosxdx

Question Number 128025    Answers: 2   Comments: 0

Question Number 128023    Answers: 0   Comments: 0

....nice calculus...= Titu′s lemma:: for any positive numbers : a_1 ,a_2 ,...,a_n , b_1 ,b_2 ,...,b_n we have: (((a_1 +...+a_n )^2 )/(b_1 +...+b_n ))≤(a_1 ^2 /b_1 ) +...+(a_n ^2 /b_n ) proof : put : x=(x_1 ,...,x_n )∈R^n :y=(y_1 ,...,y_n )∈R^n (x.y)^2 ≤∣x∣^2 ∣y∣^2 (cauchy−schwarz inequality) (x_1 y_1 +...+x_n y_n )^2 ≤(x_(1 ) ^2 +...+x_n ^2 )(y_1 ^2 +...+y_(n ) ^2 ) by applying subsitution : x_i =(a_i /( (√b_i ))) , y_i =(√b_i ) (i=1,2 ,...,n) ((a_(1 ) ^2 +...+a_(n ) ^2 )/(b_2 +...+b_n ))≤(a_1 ^2 /b_1 )+...+(a_n ^2 /b_n ) ✓✓

....nicecalculus...=Tituslemma::foranypositivenumbers:a1,a2,...,an,b1,b2,...,bnwehave:(a1+...+an)2b1+...+bna12b1+...+an2bnproof:put:x=(x1,...,xn)Rn:y=(y1,...,yn)Rn(x.y)2⩽∣x2y2(cauchyschwarzinequality)(x1y1+...+xnyn)2(x12+...+xn2)(y12+...+yn2)byapplyingsubsitution:xi=aibi,yi=bi(i=1,2,...,n)a12+...+an2b2+...+bna12b1+...+an2bn

Question Number 127958    Answers: 1   Comments: 0

...nice calculus... calculate Ω=∫_1 ^( ∞) ((ln(x^4 −2x^2 +2))/(x(√(x^2 −1)) )) dx=?

...nicecalculus...calculateΩ=1ln(x42x2+2)xx21dx=?

Question Number 127948    Answers: 1   Comments: 0

Question Number 127952    Answers: 1   Comments: 0

Question Number 127925    Answers: 1   Comments: 0

find F(a)=∫_0 ^1 (√((1+a^2 t^2 )/(1−t^2 ))) dt for background see Q127811.

findF(a)=011+a2t21t2dtforbackgroundseeQ127811.

Question Number 127904    Answers: 2   Comments: 0

prove that ∫_0 ^( 100) (dx/( (√(x(100−x))))) = π

provethat0100dxx(100x)=π

Question Number 127885    Answers: 1   Comments: 0

∫(((sin (2tan^(−1) (x)+x))/x)) the limit [0,∞)

(sin(2tan1(x)+x)x)thelimit[0,)

Question Number 127870    Answers: 2   Comments: 0

2021 HAPPY NEW Year 1)∫((x^3 +3x+2)/((x^2 +1)^2 (x+1)))dx 2)∫((2cos(x)−sin(x))/(3sin(x)+5cos(x)))dx 3)∫((tan(2x))/( (√(sin^6 (x)+cos^6 (x)))))dx 4)∫x(√((1−x^2 )/(1+x^2 ))) dx

2021HAPPYNEWYear1)x3+3x+2(x2+1)2(x+1)dx2)2cos(x)sin(x)3sin(x)+5cos(x)dx3)tan(2x)sin6(x)+cos6(x)dx4)x1x21+x2dx

Question Number 127857    Answers: 0   Comments: 1

∫(√x)e^x dx ?

xexdx?

Question Number 127851    Answers: 1   Comments: 0

ψ = ∫ (dx/(x^3 (((x^5 +1)^3 ))^(1/5) )) ?

ψ=dxx3(x5+1)35?

Question Number 127833    Answers: 2   Comments: 0

Question Number 127815    Answers: 0   Comments: 1

Question Number 127789    Answers: 0   Comments: 8

Question Number 127779    Answers: 2   Comments: 0

find A_n = ∫_0 ^(+∞) (dx/((x^2 +1)^n ))

findAn=0+dx(x2+1)n

Question Number 127777    Answers: 1   Comments: 0

explicite f(a)=∫_0 ^∞ ((lnx)/(x^2 −x+a))dx with a>(1/4)

explicitef(a)=0lnxx2x+adxwitha>14

Question Number 127776    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((lnx)/((x^2 −x+1)^2 ))dx

calculate0lnx(x2x+1)2dx

Question Number 127775    Answers: 1   Comments: 0

prove that ∫_0 ^∞ e^(−x) lnxdx=−γ

provethat0exlnxdx=γ

Question Number 127774    Answers: 2   Comments: 0

calculate u_n =∫_0 ^1 x^n (√(1−x^4 ))dx

calculateun=01xn1x4dx

Question Number 127772    Answers: 1   Comments: 0

calculate ∫_0 ^(2π) (dx/((cosx +2sinx)^2 ))

calculate02πdx(cosx+2sinx)2

Question Number 127732    Answers: 0   Comments: 0

z=x+iy why ((f(z))/(z−a)) not analytical? / not analytical at z=a?

z=x+iywhyf(z)zanotanalytical?/notanalyticalatz=a?

Question Number 127704    Answers: 1   Comments: 0

if f(x)= { ((x−n ; 2n ≤ x ≤2n+1)),((n+1 ; 2n+1≤x≤2n+2 )) :} where n =0,1,2,3,..,9 find ∫_0 ^(20) f(x)dx

iff(x)={xn;2nx2n+1n+1;2n+1x2n+2wheren=0,1,2,3,..,9find020f(x)dx

Question Number 127679    Answers: 0   Comments: 0

its 9:30pm in Cameroon

its9:30pminCameroon

  Pg 107      Pg 108      Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114      Pg 115      Pg 116   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com