Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 115

Question Number 126369    Answers: 1   Comments: 0

∫ ((tan(x))/x) dx

tan(x)xdx

Question Number 126344    Answers: 1   Comments: 0

evaluate :: ∫_(−1) ^( 0) (dx/( ((1+x^3 ))^(1/3) )) =?

evaluate::10dx1+x33=?

Question Number 126316    Answers: 0   Comments: 2

∫_( (√2)) ^(2e^(√2) ) ln (((e^x +e^(−x) )/(9(√x))))dx ?

2e22ln(ex+ex9x)dx?

Question Number 126315    Answers: 1   Comments: 0

∫(1/dx)=?

1dx=?

Question Number 126314    Answers: 2   Comments: 0

∫ (dx/((1+x^2 )(√(1−x^2 )))) ?

dx(1+x2)1x2?

Question Number 126298    Answers: 3   Comments: 0

∫_( 0) ^( (√(ln (π/2)))) xe^x^2 sin (e^x^2 ) dx ?

0ln(π/2)xex2sin(ex2)dx?

Question Number 126323    Answers: 0   Comments: 0

... advanced calculus... prove that ::: ((Γ(((1−x)/2))Γ(x))/(Γ((x/2)))) =^(???) ((2^(x−1) (√π))/(cos(((πx)/2))))

...advancedcalculus...provethat:::Γ(1x2)Γ(x)Γ(x2)=???2x1πcos(πx2)

Question Number 126349    Answers: 0   Comments: 1

...nice calculus... calculate ::: Ω=^(???) ∫_0 ^( ∞) e^( −t) t^( 2) j_0 ( t )dt where : j_((v)) (x)=x^v Σ_(n=0) ^( ∞) (((−1)^n x^(2n) )/(2^(2n+v) n!Γ(n+v+1))) ::: Bessel function of the first type of order v ... j_v (x) is convergent (why?): ∀x∈R...

...nicecalculus...calculate:::Ω=???0ett2j0(t)dtwhere:j(v)(x)=xvn=0(1)nx2n22n+vn!Γ(n+v+1):::Besselfunctionofthefirsttypeoforderv...jv(x)isconvergent(why?):xR...

Question Number 126274    Answers: 2   Comments: 0

Question Number 126273    Answers: 1   Comments: 2

Question Number 126266    Answers: 1   Comments: 0

solve ∫_0 ^( 1) ((1−x^2 )/((1+x^2 )(√(1+x^4 )))) dx ?

solve011x2(1+x2)1+x4dx?

Question Number 126230    Answers: 2   Comments: 0

∫ e^( cos^(− 1) (x)) dx

ecos1(x)dx

Question Number 126205    Answers: 0   Comments: 0

calculate ∫∫ _([0,1]^2 ) ((dxdy)/( (√(x^2 +y^2 )) +xy))

calculate[0,1]2dxdyx2+y2+xy

Question Number 126203    Answers: 3   Comments: 0

∫_0 ^∞ (1/(1+x^s +x^(2s) ))

011+xs+x2s

Question Number 126183    Answers: 1   Comments: 0

∫_0 ^( ∞) ((e^(2πx) −1)/(e^(2πx) +1)) ((1/x)−(1/(N^2 +x^2 ))) dx

0e2πx1e2πx+1(1x1N2+x2)dx

Question Number 126179    Answers: 1   Comments: 0

let f(x)= e^(−2x) actan (3x+1) 1)calculste f^((n)) (x) and f^((n)) (0) 2) if f(x)=Σ a_n x^n determine the sequence a_n 3) calculate ∫_0 ^∞ f(x)dx

letf(x)=e2xactan(3x+1)1)calculstef(n)(x)andf(n)(0)2)iff(x)=Σanxndeterminethesequencean3)calculate0f(x)dx

Question Number 126139    Answers: 1   Comments: 4

closed formula .... ∫_0 ^( 1) ((x^n ln(x))/(1+x))dx =?

closedformula....01xnln(x)1+xdx=?

Question Number 126133    Answers: 2   Comments: 0

Question Number 126073    Answers: 0   Comments: 2

Question Number 126068    Answers: 1   Comments: 0

Question Number 126065    Answers: 1   Comments: 0

Show that:: Ω = ∫_0 ^( 1) ((Li_2 (x)log(x))/(1+x))dx = −(3/(16))ζ(4) Goodluck

Showthat::Ω=01Li2(x)log(x)1+xdx=316ζ(4)Goodluck

Question Number 126000    Answers: 3   Comments: 0

∫ (dx/((x−1)(√(x^2 −2x)))) ?

dx(x1)x22x?

Question Number 125999    Answers: 2   Comments: 1

Question Number 125997    Answers: 1   Comments: 0

Find the Riemann sum for the given function with the specified number of intervals using left endpoints f(x)= 4ln x+2x ; 1≤x≤4 n=7 . Round your answer to two decimal places ?

FindtheRiemannsumforthegivenfunctionwiththespecifiednumberofintervalsusingleftendpointsf(x)=4lnx+2x;1x4n=7.Roundyouranswertotwodecimalplaces?

Question Number 125986    Answers: 1   Comments: 0

Question Number 125965    Answers: 1   Comments: 0

∫ cot x ln (sin x) dx ?

cotxln(sinx)dx?

  Pg 110      Pg 111      Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com