Question and Answers Forum |
IntegrationQuestion and Answers: Page 117 |
∫_( 0) ^( a) ∫_( 0) ^( (√(a^2 −x^2 ))) (1/((1+e^y )(√(a^2 −x^2 −y^2 ))))dxdy |
If f(x)= { ((2x ; 0<x<1)),((3 ; x=1 )),((6x−1 ; 1<x<2)) :} find ∫_0 ^2 f(x) dx ? |
∫_1 ^( x^3 +5x) f(t) dt = 2x then f(18) =? |
∫((3^t +11)/(6^t +11))dt collected problem |
...nice calculus... simple limit:: lim_(n→∞) {((1^(a+1) +2^(a+1) +...+n^(a+1) )/(n(1^a +2^a +....n^a )))}=? where a ≠−2 , −1 |
∫_1 ^3 (x−1)^3 (3−x)^2 dx |
∫_(−3) ^(−2) (y+3)^6 (y+2)^4 dy |
∫_(1/(√2)) ^(1/2) (e^(cos^(−1) (x)) /( (√(1−x^2 )))) dx ? |
∫_(2/(√3)) ^2 ((cos (sec^(−1) x))/(x(√(x^2 −1)))) dx ∫_( (√2)) ^2 ((sec^2 (sec^(−1) x))/(x(√(x^2 −1)))) dx |
Calculate ∫_0 ^2 (√((2+x)/(2−x))) dx |
∫ (dx/( (x)^(1/3) +4x)) |
∫_0 ^∞ sinx^p dx ∫_0 ^∞ ((sinx^p )/x^q )dx collected question |
∫(dx/((x^3 +1)^2 )) = ? |
Show that ∫_0 ^(ln 2) (1/(cosh(x + ln 4))) dx = 2 tan^(−1) ((4/(33))) |
...nice ◂::::▶ calculus simple question:: prove that :: ∫_0 ^( ∞) (4/( (√(4+x^4 )))) dx=^(???) ∫_0 ^( (π/2)) (dx/( (√(sin(x))))) +∫_0 ^( (π/2)) (dx/( (√(cos(x))))) |
I=∫_0 ^( ∞) (dx/((x+(√(x^2 +1)))^2 )) ? |
∫ (dx/((x+(√(x^2 +1)))^2 )) |
help ∫3xdx |
∫((4x+9)/(x^2 +6x+10))dx |
∫ (dx/(x^2 (√(x^2 −1)))) ? |
calculate ∫_0 ^∞ (dx/((2x+1)^4 (x+3)^5 )) |
find ∫_0 ^∞ cos(x^n )dx snd ∫_0 ^∞ sin(x^n )dx |
∫e^(sinx) (((xcos^2 x−sinx)/(cos^2 x)))dx |
2 ((2x+1))^(1/3) = x^3 −1 |
∫e^((xsinx+cosx)) ∙(((x^4 cos^3 x−xsinx+cosx)/(x^2 cos^2 x)))dx |
... nice calculus... find:: φ=∫_0 ^( 4) ((ln(x))/((4x−x^2 )^(1/2) ))dx=? |
Pg 112 Pg 113 Pg 114 Pg 115 Pg 116 Pg 117 Pg 118 Pg 119 Pg 120 Pg 121 |