Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 118

Question Number 124059    Answers: 0   Comments: 0

find ∫_0 ^∞ ((x^3 sin(2x))/((x^2 +x+1)^3 ))dx

find0x3sin(2x)(x2+x+1)3dx

Question Number 124046    Answers: 1   Comments: 0

φ(α) = ∫ ((6α^2 +30α+2)/(4α^2 +20α+25)) dα

ϕ(α)=6α2+30α+24α2+20α+25dα

Question Number 124043    Answers: 2   Comments: 0

∫ ((sin x cos x)/(1−2cos 2x)) dx

sinxcosx12cos2xdx

Question Number 124061    Answers: 2   Comments: 0

find ∫_0 ^∞ ((xarctanx)/((x^(2 ) +1)^2 ))dx

find0xarctanx(x2+1)2dx

Question Number 124024    Answers: 1   Comments: 0

Question Number 124004    Answers: 1   Comments: 0

∫ (dx/( ((tan x))^(1/3) )) ?

dxtanx3?

Question Number 123998    Answers: 4   Comments: 0

∫_( 0) ^( ∞) (x^2 /((1+x^2 )^2 )) dx

0x2(1+x2)2dx

Question Number 123977    Answers: 2   Comments: 0

Question Number 123964    Answers: 0   Comments: 4

∫(√(x^3 +ax+b))dx

x3+ax+bdx

Question Number 123967    Answers: 1   Comments: 0

Question Number 123937    Answers: 2   Comments: 0

...nice calculus... prove that:: ∫_((−π)/4) ^(π/4) (((π−4x)tan(x))/(1−tan(x)))dx=^(???) πln(2)−(π^2 /4)

...nicecalculus...provethat::π4π4(π4x)tan(x)1tan(x)dx=???πln(2)π24

Question Number 123921    Answers: 3   Comments: 0

∫ (1/( (√x) (x+1)((tan^(−1) (√x))^2 +9)))dx

1x(x+1)((tan1x)2+9)dx

Question Number 123900    Answers: 2   Comments: 0

... advanced integral... prove that :: Ω=∫_0 ^( ∞) ((sin^2 (x))/(x^2 (1+x^2 )))dx =(π/4)(1+(π/e^2 ))

...advancedintegral...provethat::Ω=0sin2(x)x2(1+x2)dx=π4(1+πe2)

Question Number 123896    Answers: 1   Comments: 0

∫_0 ^π ((sin^2 x)/( (√x))) dx

π0sin2xxdx

Question Number 123920    Answers: 2   Comments: 0

∫ (((x−1)(√(x^4 +2x^3 −x^2 +2x+1)))/(x^2 (x+1))) dx ?

(x1)x4+2x3x2+2x+1x2(x+1)dx?

Question Number 123866    Answers: 2   Comments: 0

To mr mjs sir. integral lover ∫_0 ^(π/4) ((tan ((π/4)−x))/(cos^2 x (√(tan^3 x+tan^2 x+tan x)))) dx =?

Tomrmjssir.integralloverπ/40tan(π4x)cos2xtan3x+tan2x+tanxdx=?

Question Number 123859    Answers: 1   Comments: 0

∫sect e^t dt

sectetdt

Question Number 123793    Answers: 2   Comments: 0

∫ ((4x−1)/(2x^2 −3x+2)) dx ?

4x12x23x+2dx?

Question Number 123769    Answers: 0   Comments: 1

Question Number 123768    Answers: 0   Comments: 0

Question Number 123767    Answers: 1   Comments: 0

Question Number 123764    Answers: 1   Comments: 0

.... advanced calculus ... prove that:::: Σ_(n=1) ^∞ {((ζ(2n+1))/(4^(n ) (2n+1)))}=ln(2)−γ γ:: euler−mascheroni constant

....advancedcalculus...provethat::::n=1{ζ(2n+1)4n(2n+1)}=ln(2)γγ::eulermascheroniconstant

Question Number 123745    Answers: 0   Comments: 0

...advanced calculus... evaluation of: Ω=∫_0 ^( (π/2)) sin(x)log(sin(x))dx by using the euler beta and gamma function: β(p,(1/2))=2∫_0 ^(π/2) sin^(2p−1) (x)dx ((dβ(p,(1/2)))/dp) =2∫_0 ^(π/2) 2sin^(2p−1) (x)ln(sin(x))dx =4∫_0 ^(π/2) sin^(2p−1) (x)ln(sin(x))dx Ω=(1/4)[((dβ(p,(1/2)))/dp)]_(p=1) ((d(β(p,(1/2))))/dp)=(√π)[((Γ′(p)Γ(p+(1/2))−Γ′(p+(1/2))Γ(p))/(Γ^2 (p+(1/2))))]_(p=1) Ω=(1/4)((√π)[((Γ^′ (1)Γ((3/2))−Γ′((3/2))Γ(1))/(Γ^2 ((3/2))))]) =((√π)/4)[((−γ(((√π)/2))−((√π)/2)(2−γ−2ln(2)))/(π/4))] =((√π)/4)∗((√π)/2)(((−γ−2+γ+2ln(2))/(π/4))) =ln(2)−1 ... m.n.july.1970...

...advancedcalculus...evaluationof:Ω=0π2sin(x)log(sin(x))dxbyusingtheeulerbetaandgammafunction:β(p,12)=20π2sin2p1(x)dxdβ(p,12)dp=20π22sin2p1(x)ln(sin(x))dx=40π2sin2p1(x)ln(sin(x))dxΩ=14[dβ(p,12)dp]p=1d(β(p,12))dp=π[Γ(p)Γ(p+12)Γ(p+12)Γ(p)Γ2(p+12)]p=1Ω=14(π[Γ(1)Γ(32)Γ(32)Γ(1)Γ2(32)])=π4[γ(π2)π2(2γ2ln(2))π4]=π4π2(γ2+γ+2ln(2)π4)=ln(2)1...m.n.july.1970...

Question Number 123710    Answers: 2   Comments: 0

calculate ∫_1 ^(√3) (dx/((x^2 +1)^2 (x+2)^5 ))

calculate13dx(x2+1)2(x+2)5

Question Number 123703    Answers: 1   Comments: 0

Question Number 123676    Answers: 2   Comments: 0

find ∫_0 ^∞ e^(−x) ln(1+e^(2x) )dx

find0exln(1+e2x)dx

  Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121      Pg 122   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com