Question and Answers Forum |
IntegrationQuestion and Answers: Page 120 |
![]() |
∫_0 ^(π/4) ((cos x+sin x)/(16sin 2x+9)) dx |
![]() |
![]() |
![]() |
... nice calculus... prove that ::: Ω=∫_0 ^( 1) (((x^ϕ −1)/(ln(x))))^2 dx=(√5) ln(ϕ) .m.n. |
∫ (sin^(−1) (x))^2 dx ? |
∫(((x^2 +1)dx)/(x^4 +x^2 +1)) = ... |
![]() |
![]() |
∫ (dx/( (((x−1)^3 (x+2)^5 ))^(1/4) )) ? |
![]() |
![]() |
![]() |
![]() |
∫_0 ^(1/(√2)) ((x sin^(−1) (x^2 ))/( (√(1−x^4 )))) dx ? |
∫_0 ^3 (dx/((3−x)(√(x^2 +1)))) ? |
![]() |
... advanced math ... two simple and nice integrals: prove that:: Ω_1 =∫_0 ^( ∞) ((sin(e^(−γ) x)ln(x))/x) dx=0 Ω_2 =∫_0 ^( ∞) ((sin(x^((√2)/2) )ln(x))/x)dx=−πγ note :: γ : Euler−mascheroni constant. .m.n. |
∫ (dx/( (√((x−a)(b−x))))) ? |
Evaluate the integral ∫ (((x)^(1/3) +1)/( (x)^(1/3) −1)) dx |
...nice integral... prove that :: ∫_0 ^( ∞) cos(πnx)((1/x^2 )−((πcoth(πx))/x))dx =^(???) πln(1−e^(−πn) ) .m.n. |
...nice calculus... In AB^Δ C prove :: ∗: sin((A/2))sin((B/2))sin((C/2))≤(1/8) ......................... ∗∗:: max(cos((A/2))cos((B/2))cos((C/2)))=? |
solve ∫_((a−1)^2 ) ^a^2 cosh^(−1) (1/( (√(a−(√x))))) dx with a>0 |
![]() |
... advanced integral... i: ∫_0 ^( 1) ((1/(ln(x)))+(1/(1−x)))dx=γ ii: ψ(x)=∫_0 ^( ∞) ((e^(−t) /t) −(e^(−tx) /(1−e^(−t) )))dt solution :{_(2 : ln(n) =^(easy) ∫_0 ^( 1) ((x^(n−1) −1)/(ln(x)))dx (∗∗)) ^(1: H_n = Σ_(k=1) ^n (1/k) =∫_0 ^( 1) ((1−x^n )/(1−x)) dx (∗)) (∗)−(∗∗): H_n −ln(n)=∫_0 ^1 (((1−x^n )/(1−x)) −((x^(n−1) −1)/(ln(x))))dx lim_(n→∞) (x^n )=^(0<x<1) 0 lim_(n→∞) (H_n −ln(n))=∫_0 ^( 1) ((1/(1n(x)))+(1/(1−x)))dx γ= ∫_0 ^( 1) ((1/(ln(x)))+(1/(1−x)))dx ✓ ............................. ψ(x)=^(easy) −γ+∫_0 ^( 1) ((1−t^(x−1) )/(1−t))dt ψ(x)=−∫_0 ^( 1) (1/(ln(t)))+(1/(1−t))dt+∫_0 ^( 1) ((1−t^(x−1) )/(1−t))dt =∫_0 ^( 1) −(1/(ln(t))) +((1−t^(x−1) −1)/(1−t))dt =−∫_0 ^( 1) (1/(ln(t)))+(t^(x−1) /(1−t)) dt=^(t=e^(−y) ) =−∫_∞ ^( 0) ((1/(−y))+(e^(−yx+y) /(1−e^(−y) )))(−e^(−y) )dy =∫_0 ^( ∞) (e^(−y) /y)−(e^(−yx) /(1−e^(−y) ))dy ∵ ψ(x)=∫_0 ^( ∞) ((e^(−y) /y)−(e^(−yx) /(1−e^(−y) )))dy ✓ |
Pg 115 Pg 116 Pg 117 Pg 118 Pg 119 Pg 120 Pg 121 Pg 122 Pg 123 Pg 124 |