Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 123

Question Number 122349    Answers: 1   Comments: 1

Find the polynomial P(x) of least degree that has a maximum equal to 6 at x=1 and minimum equal to 2 at x=3.

FindthepolynomialP(x)ofleastdegreethathasamaximumequalto6atx=1andminimumequalto2atx=3.

Question Number 122330    Answers: 2   Comments: 0

...advanced calculus... prove that : Re(∫_0 ^( (π/2)) sin^3 (x)ln(ln(cos(x)))dx) =^? ((ln(3)−2γ)/3) ✓

...advancedcalculus...provethat:Re(0π2sin3(x)ln(ln(cos(x)))dx)=?ln(3)2γ3

Question Number 122323    Answers: 1   Comments: 1

calculate A_n =∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)....(x^2 +n))) wth n integr natural and n≥1

calculateAn=0dx(x2+1)(x2+2)....(x2+n)wthnintegrnaturalandn1

Question Number 122298    Answers: 1   Comments: 0

...nice calculus... prove that : Σ_(n=1 ) ^∞ {((ζ(2n+1)−1)/(n+1))}=−γ+ln(2)✓ ..m.n.1970..

...nicecalculus...provethat:n=1{ζ(2n+1)1n+1}=γ+ln(2)..m.n.1970..

Question Number 122290    Answers: 1   Comments: 1

... nice calculus... calculate :: Ω=∫_0 ^( 1) x^2 (ψ(1+x)−ψ(2−x))dx=??? .m.n.1970.

...nicecalculus...calculate::Ω=01x2(ψ(1+x)ψ(2x))dx=???.m.n.1970.

Question Number 122274    Answers: 2   Comments: 0

∫ ((√(1−(√x)))/( (√(1+(√x))))) dx ?

1x1+xdx?

Question Number 122205    Answers: 1   Comments: 2

find ∫ (dx/(x(x+1)(√(x^2 +x))))

finddxx(x+1)x2+x

Question Number 122186    Answers: 2   Comments: 0

Obtain a reduction formulae for I_n = ∫_0 ^1 (ln x)^n dx find I_2 = ∫_0 ^1 (ln x)^2 dx

ObtainareductionformulaeforIn=10(lnx)ndxfindI2=10(lnx)2dx

Question Number 122160    Answers: 1   Comments: 0

Question Number 122159    Answers: 3   Comments: 0

... nice calculus... prove that:: Ω=∫_0 ^( (π/2)) {tan^(−1) (ptan(x))−tan^(−1) (qtan(x))}(tan(x)+cot(x))dx =(π/2) log((p/q)) ( p , q >0 ) m.n.

...nicecalculus...provethat::Ω=0π2{tan1(ptan(x))tan1(qtan(x))}(tan(x)+cot(x))dx=π2log(pq)(p,q>0)m.n.

Question Number 122157    Answers: 2   Comments: 1

find ∫_(−1) ^1 (√(1+x^4 ))dx

find111+x4dx

Question Number 122137    Answers: 1   Comments: 0

Question Number 122120    Answers: 2   Comments: 0

∫_0 ^3 (1/( (√y))).e^y dy

301y.eydy

Question Number 122109    Answers: 2   Comments: 0

Question Number 122108    Answers: 1   Comments: 0

∫_1 ^2 ((ln (x))/x^2 ) dx ?

21ln(x)x2dx?

Question Number 122098    Answers: 1   Comments: 1

Question Number 122044    Answers: 0   Comments: 3

Question Number 122035    Answers: 1   Comments: 0

...nice calculus... prove that : ∫_0 ^( 1) ((ln^2 (1+x))/x)dx=^(??) ((ζ(3))/4) .m.n.

...nicecalculus...provethat:01ln2(1+x)xdx=??ζ(3)4.m.n.

Question Number 121972    Answers: 1   Comments: 0

∫_0 ^( ∞) e^(−x^2 ) cos(5x)dx

0ex2cos(5x)dx

Question Number 121965    Answers: 2   Comments: 0

∫_4 ^9 ((ℓn (x))/( (√x))) dx ?

94n(x)xdx?

Question Number 121962    Answers: 2   Comments: 0

∫_0 ^1 (dx/( ((x^2 −x^3 ))^(1/(3 )) )) ?

10dxx2x33?

Question Number 121928    Answers: 1   Comments: 2

Σ_(n=0) ^∞ ((1/(12n+1))+(1/(12n+5))−(1/(12n+7))−(1/(12n+11))) Problem source : Brilliant.Org

n=0(112n+1+112n+5112n+7112n+11)Problemsource:Brilliant.Org

Question Number 121887    Answers: 2   Comments: 2

Question Number 121886    Answers: 2   Comments: 1

Question Number 121875    Answers: 2   Comments: 0

Question Number 121862    Answers: 1   Comments: 0

1)explicite f(a)=∫_0 ^∞ ((t^(a−1) lnt)/(1+t))dt with 0<a<1 2)calculate ∫_0 ^∞ ((lnt)/((1+t)(√t)))dt

1)explicitef(a)=0ta1lnt1+tdtwith0<a<12)calculate0lnt(1+t)tdt

  Pg 118      Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com