Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 124

Question Number 121225    Answers: 2   Comments: 0

∫_0 ^1 x^5 (√((1+x^2 )/(1−x^2 ))) dx ?

10x51+x21x2dx?

Question Number 121224    Answers: 1   Comments: 0

∫ cos^2 x tan^3 x dx

cos2xtan3xdx

Question Number 121203    Answers: 2   Comments: 0

∫ ((cos^5 (x))/( (√(sin (x))))) dx

cos5(x)sin(x)dx

Question Number 121174    Answers: 4   Comments: 0

∫_(−π/2) ^(π/2) (x^2 +ln (((π+x)/(π−x))))cos x dx ?

π/2π/2(x2+ln(π+xπx))cosxdx?

Question Number 121119    Answers: 4   Comments: 0

M= ∫ _(−15) ^(−8) ( (dx/(x(√(1−x))))) ?

M=815(dxx1x)?

Question Number 121117    Answers: 2   Comments: 0

J=∫_0 ^3 ((2x^2 +x−1)/( (√(x+1)))) dx ?

J=302x2+x1x+1dx?

Question Number 121102    Answers: 2   Comments: 0

∫ (((x−1)(√(x^4 +2x^3 −x^2 +2x+1)))/(x^2 (x+1))) dx ?

(x1)x4+2x3x2+2x+1x2(x+1)dx?

Question Number 121029    Answers: 2   Comments: 1

Question Number 120970    Answers: 1   Comments: 0

Question Number 120964    Answers: 0   Comments: 3

Question Number 120898    Answers: 0   Comments: 0

evaluate: ∫_0 ^( ∞) ((x/(x+1)) − lim_(k→∞) ((k/(k+1)))^(⌊k⌋) )^(⌊x⌋) dx

evaluate:0(xx+1limk(kk+1)k)xdx

Question Number 120879    Answers: 0   Comments: 0

Question Number 120875    Answers: 0   Comments: 0

... Nice calculus... evaluate :: S= Σ_(n=1) ^∞ ((2^(−2n) /(1+cos((π/2^n )))))=?? ...M.N.1970...

...Nicecalculus...evaluate::S=n=1(22n1+cos(π2n))=??...M.N.1970...

Question Number 120775    Answers: 2   Comments: 0

...advanced calculus... evaluate :: Φ=^(???) ∫_0 ^( 1) ln(x)tan^(−1) (x)dx ...m.n.1970...

...advancedcalculus...evaluate::Φ=???01ln(x)tan1(x)dx...m.n.1970...

Question Number 120774    Answers: 1   Comments: 0

...advanced calculus... prove that :: Ω=∫_0 ^( 1) ((ln(x))/( ((1−x^3 ))^(1/3) ))dx=^(???) −(π/(3(√3)))(ln(3)+(π/(3(√3)))) ...m.n.1970...

...advancedcalculus...provethat::Ω=01ln(x)1x33dx=???π33(ln(3)+π33)...m.n.1970...

Question Number 120761    Answers: 1   Comments: 0

∫ tan^(−1) ((√((1−x)/(1+x))) ) dx ?

tan1(1x1+x)dx?

Question Number 120758    Answers: 3   Comments: 0

∫ (dx/(a sin x + b cos x))

dxasinx+bcosx

Question Number 120703    Answers: 1   Comments: 0

∫ (dx/(x^2 (√(9+x^2 )))) ?

dxx29+x2?

Question Number 120688    Answers: 1   Comments: 0

∫_0 ^π ((x dx)/(1+sin^2 x))

π0xdx1+sin2x

Question Number 120628    Answers: 0   Comments: 15

selective intregals

selectiveintregals

Question Number 120599    Answers: 0   Comments: 0

Let x = u^6 dx = 6u^5 du I = ∫(u^3 /((1+u^2 )^2 )) ×6u^5 du =6 ∫(u^8 /(1+2u^2 +u^4 )) du =6 ∫[((−4)/(u^2 +1))+(1/((1+u^2 )^2 ))+u^4 −2u^2 +3]du =6[−4tan^(−1) (u) + I_1 + (u^5 /5) − (2/3)u^3 +3u]+c I_1 = ∫(1/((1+u^2 )^2 )) du Put u = tan z du = sec^2 z dz I_1 = ∫(1/(sec^4 z))×sec^2 z dz = ∫cos^2 z dz = ∫(1/2)(cos 2z + 1)dz = (1/2)((1/2) sin 2z + z) = (1/2)×(u/(1+u^2 )) + (1/2) tan^(−1) u I = −4 tan^(−1) u + (u/(2(1+u^2 ))) + (1/2) tan^(−1) u +(u^5 /5) − (2/3)u^3 + 3u + c = −(7/2) tan^(−1) u + (u/(2(1+u^2 ))) + (1/5)u^5 + 3u + c = −(7/2) tan^(−1) ( ^6 (√x)) + ((x)^(1/6) /(2(1+(x^2 )^(1/6) ))) + (1/5) (x^5 )^(1/6) + 3 (x)^(1/6) + c

Letx=u6dx=6u5duI=u3(1+u2)2×6u5du=6u81+2u2+u4du=6[4u2+1+1(1+u2)2+u42u2+3]du=6[4tan1(u)+I1+u5523u3+3u]+cI1=1(1+u2)2duPutu=tanzdu=sec2zdzI1=1sec4z×sec2zdz=cos2zdz=12(cos2z+1)dz=12(12sin2z+z)=12×u1+u2+12tan1uI=4tan1u+u2(1+u2)+12tan1u+u5523u3+3u+c=72tan1u+u2(1+u2)+15u5+3u+c=72tan1(6x)+x62(1+x26)+15x56+3x6+c

Question Number 120582    Answers: 0   Comments: 0

Let u=x^(3/5) du = (3/(5x^(2/5) )) I = (5/3)∫(u/( (√(3−2u)))) du = −(5/6) ∫((3−2u−3)/( (√(3−2u)))) du = −(5/3) ∫[(√(3−2u)) −3(3−2u)^(−(1/2)) ] du = −(5/3)[−(1/3)(3−2u)^(3/2) +3(3−2u)^(1/2) ]+c = −(5/(18))(3−2u)^(1/2) [−3+2u + 9]+c = −(5/(18))(3−2u)^(1/2) (6+2u)+c = −(5/9)(√(3−2x^(3/5) ))(3+x^(3/5) )+c

Letu=x35du=35x25I=53u32udu=5632u332udu=53[32u3(32u)12]du=53[13(32u)32+3(32u)12]+c=518(32u)12[3+2u+9]+c=518(32u)12(6+2u)+c=5932x35(3+x35)+c

Question Number 120562    Answers: 1   Comments: 0

Question Number 120554    Answers: 0   Comments: 0

Prove that for all a>0 ∫_([−a;a]) arg(Γ((1/2) −ix))dx =0 Deduce that f: x→arg(Γ((1/2) −ix)) is an old function on R

Provethatforalla>0[a;a]arg(Γ(12ix))dx=0Deducethatf:xarg(Γ(12ix))isanoldfunctiononR

Question Number 120552    Answers: 0   Comments: 0

evaluate: ∫_0 ^( ∞) ((x/(x+1)))^(x!) dx

evaluate:0(xx+1)x!dx

Question Number 120549    Answers: 3   Comments: 0

  Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com