Question and Answers Forum |
IntegrationQuestion and Answers: Page 126 |
∫_0 ^π (√((1+cos2x)/2)) dx ∫_0 ^∞ [ne^(−x) ]dx |
... ♣_♣ ^♣ nice calculus♣_♣ ^♣ ... prove that :: Ω=∫_0 ^( ∞) e^(−2x) ln(((1+e^(−x) )/(1−e^(−x) )))=1 ...★ M.N.1970★... |
...nice calculus... prove that :: ∫_0 ^( (π/2)) (√(((2^x −1)sin^3 (x))/((2^x +1)(sin^3 (x)+cos^3 (x))))) dx<(π/8) ...m.n.1970... |
... advanced calculus... evaluate :: Ω=∫_0 ^( ∞) ((tan^(−1) (x))/(e^(2πx) −1))dx =? m.n.1970 |
calculste ∫_0 ^∞ ((ln(2+x^2 ))/(1+x^3 ))dx |
...nice calculus... prove that:: Σ_(n=1) ^∞ (((−1)^(n−1) )/(n^3 (((2n)),(n) ))) =^(???) ζ(3) m.n.1970 |
... advanced calculus... prove that : Σ_(n=1) ^∞ (1/(n^2 (((2n)),(n) ))) =^(???) ((ζ(2))/3) solution:: Σ_(n=1) ^∞ (1/(n^2 ∗(((2n)!)/((n!)^2 ))))=Σ_(n=1) ^∞ ((n!∗n!)/(n^2 ∗(2n)!)) =Σ_(n=1) ^∞ ((Γ(n)Γ(n+1))/(nΓ(2n+1)))=Σ_(n=1) ^∞ ((β(n,n+1))/n) =Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) x^(n−1) (1−x)^n =∫_0 ^( 1) (1/x)Σ(((x−x^2 )^n )/n)dx =−∫_0 ^( 1) ((ln(1−x+x^2 ))/x)dx =−∫_0 ^( 1) ((ln(1+x^3 )−ln(1+x))/x)dx =∫_0 ^( 1) ((ln(1+x))/x)dx −∫_0 ^( 1) ((ln(1+x^3 ))/x)dx =−li_2 (−1) −∫_0 ^( 1) ((Σ_(n=1) (((−1)^(n+1) x^(3n) )/n))/x) dx =(π^2 /(12))+Σ_(n=1) ^∞ (((−1)^n )/n)∫_0 ^( 1) x^(3n−1) dx =(π^2 /(12)) +(1/3)Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(π^2 /(12))−(π^2 /(36)) =(π^2 /(18)) =((ζ(2))/3) ✓✓ m.n.july.1970.. |
decompose F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3))) and calculate ∫_(√2) ^(+∞) F(x)dx |
Express f(x) = (1/((x−1)^2 (x^2 +1))) into partial fractions. hence evaluate I = ∫_0 ^4 f(x) dx |
![]() |
![]() |
... nice calculus... evaluate:: I:= ∫_0 ^( 1) li_2 (1−x^2 )dx=?? .m.n.1970. |
find ∫_0 ^∞ ((lnx)/(x^4 +x^2 +2))dx |
calculate ∫_0 ^(2π) (dθ/((x^2 −2cosθ x+1)^2 )) |
∫ (x^2 /( (√((4−x^2 )^5 )))) dx |
Determine ∫_(−(π/4)) ^( (π/4)) (cost+(√(1+t^2 sin^3 tcos^3 t))dt=? |
![]() |
∫ ((x^2 −x+6)/(x^3 +3x)) dx ∫ ((5x^2 +3x−2)/(x^3 +2x^2 )) dx |
∫_(−π/4) ^(+π/4) ((√(1+tan x))/( (√(1−tan x))))dx |
![]() |
![]() |
![]() |
∫ (dx/(x^6 −x^3 )) ? |
find ∫_0 ^∞ ((lnx)/(x^2 +x+1))dx |
find ∫_0 ^∞ ((sin(3cosx))/((x^2 +4)^2 ))dx |
I=∫_0 ^∞ ((lnx)/(x^2 +2x+4)) dx put x+1=(√3) tanθ I=∫_0 ^(π/2) ((ln((√3) tanθ−1))/(3(sec^2 θ))) (√3) sec^2 θdθ I=(1/( (√3)))∫_0 ^(π/2) ln((√3)tanθ−1) dθ I=(1/( (√3)))∫_0 ^(π/2) ln((√3)sinθ−cosθ)−lncosθ dθ I=(1/( (√3)))∫_0 ^(π/2) ln(sin(θ−(π/6))+ln2−lncosθ dθ A=∫_(−2) ^6 ∣g(x)∣ dx ⇒let g(p)=0⇒ f(0)=p=2 A=∫_(−2) ^2 −g(x) dx+∫_2 ^6 g(x) dx ⇒put x=f(t) A=∫_(−1) ^0 −tf′(t) dt+∫_0 ^1 t f(t) dt A=∫_(−1) ^0 −3t^3 −3t dt+∫_0 ^1 3t^3 +3t dt A=2(((3t^4 )/4)+((3t^2 )/2))_0 ^1 =(9/2) lnx=(1/x)⇒xlnx=1(let x=α) ∫_1 ^α (1/x)−lnx dx=∫_α ^a lnx−(1/x) dx ⇒lnx−xlnx+x]_1 ^α =xlnx−x−lnx]_α ^a ⇒lnα−1+α−1=alna−a−lna−1+α +lnα ⇒alna−a−lna=−1 ⇒alna−lna=a−1⇒a=e s(t)=(1/2)∣OA^→ ×OB^→ ∣ s(t)=(1/2)∣(2,2,1)×(t,1,t+1)∣ s(t)=(1/2)∣(2t+1),(−2−t),(2−2t)∣ f(x)=(1/4)∫_0 ^x (2t+1)^2 +(t+2)^2 +(2−2t)^2 dt f(x)=(1/4)∫_0 ^x 9t^2 +9 dt=((3x^3 +9x)/4) A=(1/4)∫_0 ^6 (3x^3 +9x)dx=((3x^4 +18x^2 )/(16))]_0 ^6 A=((3.6^3 (6+1))/(16))=((567)/2) |
Pg 121 Pg 122 Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128 Pg 129 Pg 130 |