Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 126

Question Number 119681    Answers: 4   Comments: 0

∫_0 ^π (√((1+cos2x)/2)) dx ∫_0 ^∞ [ne^(−x) ]dx

0π1+cos2x2dx0[nex]dx

Question Number 119570    Answers: 3   Comments: 0

... ♣_♣ ^♣ nice calculus♣_♣ ^♣ ... prove that :: Ω=∫_0 ^( ∞) e^(−2x) ln(((1+e^(−x) )/(1−e^(−x) )))=1 ...★ M.N.1970★...

...nicecalculus...provethat::Ω=0e2xln(1+ex1ex)=1...M.N.1970...

Question Number 119591    Answers: 0   Comments: 6

...nice calculus... prove that :: ∫_0 ^( (π/2)) (√(((2^x −1)sin^3 (x))/((2^x +1)(sin^3 (x)+cos^3 (x))))) dx<(π/8) ...m.n.1970...

...nicecalculus...provethat::0π2(2x1)sin3(x)(2x+1)(sin3(x)+cos3(x))dx<π8...m.n.1970...

Question Number 119462    Answers: 2   Comments: 0

... advanced calculus... evaluate :: Ω=∫_0 ^( ∞) ((tan^(−1) (x))/(e^(2πx) −1))dx =? m.n.1970

...advancedcalculus...evaluate::Ω=0tan1(x)e2πx1dx=?m.n.1970

Question Number 119446    Answers: 0   Comments: 0

calculste ∫_0 ^∞ ((ln(2+x^2 ))/(1+x^3 ))dx

calculste0ln(2+x2)1+x3dx

Question Number 119445    Answers: 0   Comments: 0

...nice calculus... prove that:: Σ_(n=1) ^∞ (((−1)^(n−1) )/(n^3 (((2n)),(n) ))) =^(???) ζ(3) m.n.1970

...nicecalculus...provethat::n=1(1)n1n3(2nn)=???ζ(3)m.n.1970

Question Number 119442    Answers: 0   Comments: 0

... advanced calculus... prove that : Σ_(n=1) ^∞ (1/(n^2 (((2n)),(n) ))) =^(???) ((ζ(2))/3) solution:: Σ_(n=1) ^∞ (1/(n^2 ∗(((2n)!)/((n!)^2 ))))=Σ_(n=1) ^∞ ((n!∗n!)/(n^2 ∗(2n)!)) =Σ_(n=1) ^∞ ((Γ(n)Γ(n+1))/(nΓ(2n+1)))=Σ_(n=1) ^∞ ((β(n,n+1))/n) =Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) x^(n−1) (1−x)^n =∫_0 ^( 1) (1/x)Σ(((x−x^2 )^n )/n)dx =−∫_0 ^( 1) ((ln(1−x+x^2 ))/x)dx =−∫_0 ^( 1) ((ln(1+x^3 )−ln(1+x))/x)dx =∫_0 ^( 1) ((ln(1+x))/x)dx −∫_0 ^( 1) ((ln(1+x^3 ))/x)dx =−li_2 (−1) −∫_0 ^( 1) ((Σ_(n=1) (((−1)^(n+1) x^(3n) )/n))/x) dx =(π^2 /(12))+Σ_(n=1) ^∞ (((−1)^n )/n)∫_0 ^( 1) x^(3n−1) dx =(π^2 /(12)) +(1/3)Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(π^2 /(12))−(π^2 /(36)) =(π^2 /(18)) =((ζ(2))/3) ✓✓ m.n.july.1970..

...advancedcalculus...provethat:n=11n2(2nn)=???ζ(2)3solution::n=11n2(2n)!(n!)2=n=1n!n!n2(2n)!=n=1Γ(n)Γ(n+1)nΓ(2n+1)=n=1β(n,n+1)n=n=11n01xn1(1x)n=011xΣ(xx2)nndx=01ln(1x+x2)xdx=01ln(1+x3)ln(1+x)xdx=01ln(1+x)xdx01ln(1+x3)xdx=li2(1)01n=1(1)n+1x3nnxdx=π212+n=1(1)nn01x3n1dx=π212+13n=1(1)nn2=π212π236=π218=ζ(2)3m.n.july.1970..

Question Number 119425    Answers: 1   Comments: 0

decompose F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3))) and calculate ∫_(√2) ^(+∞) F(x)dx

decomposeF(x)=2x1(x21)2(x2+3)andcalculate2+F(x)dx

Question Number 119335    Answers: 2   Comments: 0

Express f(x) = (1/((x−1)^2 (x^2 +1))) into partial fractions. hence evaluate I = ∫_0 ^4 f(x) dx

Expressf(x)=1(x1)2(x2+1)intopartialfractions.henceevaluateI=40f(x)dx

Question Number 119323    Answers: 1   Comments: 4

Question Number 119306    Answers: 3   Comments: 0

Question Number 119282    Answers: 1   Comments: 0

... nice calculus... evaluate:: I:= ∫_0 ^( 1) li_2 (1−x^2 )dx=?? .m.n.1970.

...nicecalculus...evaluate::I:=01li2(1x2)dx=??.m.n.1970.

Question Number 119318    Answers: 0   Comments: 0

find ∫_0 ^∞ ((lnx)/(x^4 +x^2 +2))dx

find0lnxx4+x2+2dx

Question Number 119317    Answers: 0   Comments: 0

calculate ∫_0 ^(2π) (dθ/((x^2 −2cosθ x+1)^2 ))

calculate02πdθ(x22cosθx+1)2

Question Number 119262    Answers: 3   Comments: 0

∫ (x^2 /( (√((4−x^2 )^5 )))) dx

x2(4x2)5dx

Question Number 119256    Answers: 0   Comments: 0

Determine ∫_(−(π/4)) ^( (π/4)) (cost+(√(1+t^2 sin^3 tcos^3 t))dt=?

Determineπ4π4(cost+1+t2sin3tcos3tdt=?

Question Number 119151    Answers: 0   Comments: 0

Question Number 119070    Answers: 2   Comments: 0

∫ ((x^2 −x+6)/(x^3 +3x)) dx ∫ ((5x^2 +3x−2)/(x^3 +2x^2 )) dx

x2x+6x3+3xdx5x2+3x2x3+2x2dx

Question Number 119038    Answers: 2   Comments: 0

∫_(−π/4) ^(+π/4) ((√(1+tan x))/( (√(1−tan x))))dx

+π/4π/41+tanx1tanxdx

Question Number 119021    Answers: 1   Comments: 0

Question Number 119006    Answers: 2   Comments: 0

Question Number 118997    Answers: 3   Comments: 0

Question Number 118959    Answers: 2   Comments: 0

∫ (dx/(x^6 −x^3 )) ?

dxx6x3?

Question Number 118955    Answers: 1   Comments: 0

find ∫_0 ^∞ ((lnx)/(x^2 +x+1))dx

find0lnxx2+x+1dx

Question Number 118949    Answers: 0   Comments: 0

find ∫_0 ^∞ ((sin(3cosx))/((x^2 +4)^2 ))dx

find0sin(3cosx)(x2+4)2dx

Question Number 118934    Answers: 0   Comments: 0

I=∫_0 ^∞ ((lnx)/(x^2 +2x+4)) dx put x+1=(√3) tanθ I=∫_0 ^(π/2) ((ln((√3) tanθ−1))/(3(sec^2 θ))) (√3) sec^2 θdθ I=(1/( (√3)))∫_0 ^(π/2) ln((√3)tanθ−1) dθ I=(1/( (√3)))∫_0 ^(π/2) ln((√3)sinθ−cosθ)−lncosθ dθ I=(1/( (√3)))∫_0 ^(π/2) ln(sin(θ−(π/6))+ln2−lncosθ dθ A=∫_(−2) ^6 ∣g(x)∣ dx ⇒let g(p)=0⇒ f(0)=p=2 A=∫_(−2) ^2 −g(x) dx+∫_2 ^6 g(x) dx ⇒put x=f(t) A=∫_(−1) ^0 −tf′(t) dt+∫_0 ^1 t f(t) dt A=∫_(−1) ^0 −3t^3 −3t dt+∫_0 ^1 3t^3 +3t dt A=2(((3t^4 )/4)+((3t^2 )/2))_0 ^1 =(9/2) lnx=(1/x)⇒xlnx=1(let x=α) ∫_1 ^α (1/x)−lnx dx=∫_α ^a lnx−(1/x) dx ⇒lnx−xlnx+x]_1 ^α =xlnx−x−lnx]_α ^a ⇒lnα−1+α−1=alna−a−lna−1+α +lnα ⇒alna−a−lna=−1 ⇒alna−lna=a−1⇒a=e s(t)=(1/2)∣OA^→ ×OB^→ ∣ s(t)=(1/2)∣(2,2,1)×(t,1,t+1)∣ s(t)=(1/2)∣(2t+1),(−2−t),(2−2t)∣ f(x)=(1/4)∫_0 ^x (2t+1)^2 +(t+2)^2 +(2−2t)^2 dt f(x)=(1/4)∫_0 ^x 9t^2 +9 dt=((3x^3 +9x)/4) A=(1/4)∫_0 ^6 (3x^3 +9x)dx=((3x^4 +18x^2 )/(16))]_0 ^6 A=((3.6^3 (6+1))/(16))=((567)/2)

I=0lnxx2+2x+4dxputx+1=3tanθI=0π/2ln(3tanθ1)3(sec2θ)3sec2θdθI=130π/2ln(3tanθ1)dθI=130π/2ln(3sinθcosθ)lncosθdθI=130π/2ln(sin(θπ6)+ln2lncosθdθA=26g(x)dxletg(p)=0f(0)=p=2A=22g(x)dx+26g(x)dxputx=f(t)A=10tf(t)dt+01tf(t)dtA=103t33tdt+013t3+3tdtA=2(3t44+3t22)01=92lnx=1xxlnx=1(letx=α)1α1xlnxdx=αalnx1xdxlnxxlnx+x]1α=xlnxxlnx]αalnα1+α1=alnaalna1+α+lnαalnaalna=1alnalna=a1a=es(t)=12OA×OBs(t)=12(2,2,1)×(t,1,t+1)s(t)=12(2t+1),(2t),(22t)f(x)=140x(2t+1)2+(t+2)2+(22t)2dtf(x)=140x9t2+9dt=3x3+9x4A=1406(3x3+9x)dx=3x4+18x216]06A=3.63(6+1)16=5672

  Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com