Question and Answers Forum |
IntegrationQuestion and Answers: Page 127 |
![]() |
![]() |
... advanced calculus... prove that :: Σ_(n=1) ^∞ (((−1)^n H_n )/n^2 ) =∫_0 ^( 1) ((ln(1−x)ln(1+x) )/x)dx note :: H_n =Σ_(k=1) ^n (1/k) therefore: Σ_(n=1 ) ^∞ (((−1)^n H_n )/n^2 )=((−5)/8) ζ (3 ) ✓ ..m.n.july.1970... |
∫ (dλ/((λ^2 −9)^2 )) =? |
∫_0 ^π arctan(3^(cosx) )dx=??? please help |
... advanced calculus... evaluate :: {_(2. Ω_2 = ∫_0 ^( (1/2)) ((ln^2 (1+x))/x) dx=??) ^(1. Ω_1 =∫_0 ^( (1/2)) ((ln^2 (1−x))/x)dx=??) ... M.N.1970... |
∫ ((x^4 +1)/(x^5 +4x^3 )) dx |
∫((x^4 +x^2 +1)/((x^2 +4)^2 (x^2 +1))) dx |
∫_2 ^4 x^3 e^x dx |
∫ ((2 dx)/(x^2 (((3+x^4 )^5 ))^(1/(4 )) )) dx |
![]() |
... ⧫Advanced Calculus⧫... Evaluate:: Ω = ∫_0 ^( 1 ) ((sin^(−1) (x))/(1+x^2 ))dx ...♠L𝛗rD ∅sE♠... ...♣GooD LucK♣ |
∫ ((x∣sin x∣)/(1+cos^2 x)) dx ? |
![]() |
Given f(x) = ∫ _0 ^x (dt/([f(t)]^2 )) and ∫ _0 ^2 (dt/([ f(t)]^2 )) = (6)^(1/(3 )) Then then the value of f(9) is __ |
∫ cos (2cot^(−1) (√((1−x)/(1+x))) ) dx ? |
solve ∫_0 ^1 (dx/( (√x) (√(1−x)) )) . |
∫ tan (x).tan (2x).tan (3x) dx = ? |
...ADVANCED CALCULUS... If ∫_0 ^( ∞) ln(x)sin(x^2 )dx =λ∫_0 ^( ∞) sin(x^2 )dx then find the value of ′′λ′′ . ...m.n.july.1970... |
... ⧫Advanced Calculus⧫... Evaluate:: Ω = ∫_0 ^( ∞) ((secθ)/( (√(4tan^2 θ+5))))dθ ...♠L𝛗rD ∅sE♠... ...♣GooD LucK♣ |
find ∫_0 ^∞ e^(−2x) ln(1+3x)dx |
find ∫_(−∞) ^∞ ((arctan(1+2x))/(x^2 +1))dx |
calculate ∫_0 ^∞ ((arctan(2+x^2 ))/(x^2 +9))dx |
... nice calculus... evaluate :: lim_(s→0) ((ζ( 1+s )+ζ(1−s))/2) =^? γ γ: euler−mascheroni constant m.n.1970. |
∫ cos^4 (x) cos^4 (2x) dx |
∫ ((2sin 2x)/(4cos x+sin 2x)) dx |
Pg 122 Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128 Pg 129 Pg 130 Pg 131 |