Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 128

Question Number 118752    Answers: 0   Comments: 0

∫ ((2 dx)/(x^2 (((3+x^4 )^5 ))^(1/(4 )) )) dx

2dxx2(3+x4)54dx

Question Number 118710    Answers: 2   Comments: 0

Question Number 118705    Answers: 2   Comments: 0

... ⧫Advanced Calculus⧫... Evaluate:: Ω = ∫_0 ^( 1 ) ((sin^(−1) (x))/(1+x^2 ))dx ...♠L𝛗rD ∅sE♠... ...♣GooD LucK♣

...AdvancedCalculus...Evaluate::Ω=01sin1(x)1+x2dx...LϕrDsE......GooDLucK

Question Number 118668    Answers: 1   Comments: 0

∫ ((x∣sin x∣)/(1+cos^2 x)) dx ?

xsinx1+cos2xdx?

Question Number 118679    Answers: 2   Comments: 0

Question Number 118663    Answers: 1   Comments: 2

Given f(x) = ∫ _0 ^x (dt/([f(t)]^2 )) and ∫ _0 ^2 (dt/([ f(t)]^2 )) = (6)^(1/(3 )) Then then the value of f(9) is __

Givenf(x)=x0dt[f(t)]2and20dt[f(t)]2=63Thenthenthevalueoff(9)is__

Question Number 118575    Answers: 1   Comments: 0

∫ cos (2cot^(−1) (√((1−x)/(1+x))) ) dx ?

cos(2cot11x1+x)dx?

Question Number 118566    Answers: 6   Comments: 2

solve ∫_0 ^1 (dx/( (√x) (√(1−x)) )) .

solve10dxx1x.

Question Number 118541    Answers: 3   Comments: 1

∫ tan (x).tan (2x).tan (3x) dx = ?

tan(x).tan(2x).tan(3x)dx=?

Question Number 121164    Answers: 0   Comments: 0

...ADVANCED CALCULUS... If ∫_0 ^( ∞) ln(x)sin(x^2 )dx =λ∫_0 ^( ∞) sin(x^2 )dx then find the value of ′′λ′′ . ...m.n.july.1970...

...ADVANCEDCALCULUS...If0ln(x)sin(x2)dx=λ0sin(x2)dxthenfindthevalueofλ....m.n.july.1970...

Question Number 118491    Answers: 1   Comments: 0

... ⧫Advanced Calculus⧫... Evaluate:: Ω = ∫_0 ^( ∞) ((secθ)/( (√(4tan^2 θ+5))))dθ ...♠L𝛗rD ∅sE♠... ...♣GooD LucK♣

...AdvancedCalculus...Evaluate::Ω=0secθ4tan2θ+5dθ...LϕrDsE......GooDLucK

Question Number 118478    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−2x) ln(1+3x)dx

find0e2xln(1+3x)dx

Question Number 118476    Answers: 0   Comments: 0

find ∫_(−∞) ^∞ ((arctan(1+2x))/(x^2 +1))dx

findarctan(1+2x)x2+1dx

Question Number 118475    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(2+x^2 ))/(x^2 +9))dx

calculate0arctan(2+x2)x2+9dx

Question Number 118438    Answers: 0   Comments: 0

... nice calculus... evaluate :: lim_(s→0) ((ζ( 1+s )+ζ(1−s))/2) =^? γ γ: euler−mascheroni constant m.n.1970.

...nicecalculus...evaluate::lims0ζ(1+s)+ζ(1s)2=?γγ:eulermascheroniconstantm.n.1970.

Question Number 118436    Answers: 4   Comments: 0

∫ cos^4 (x) cos^4 (2x) dx

cos4(x)cos4(2x)dx

Question Number 118419    Answers: 4   Comments: 1

∫ ((2sin 2x)/(4cos x+sin 2x)) dx

2sin2x4cosx+sin2xdx

Question Number 118395    Answers: 2   Comments: 5

∫_a ^b ((f(x))/(f(x)+f(a+b−x)))dx

abf(x)f(x)+f(a+bx)dx

Question Number 207620    Answers: 1   Comments: 0

prove that ∫_(−a) ^a (dx/(x^n +1+(√(x^(2n) +1))))=a

provethataadxxn+1+x2n+1=a

Question Number 118347    Answers: 1   Comments: 0

∫ (dx/( (√x) +(x)^(1/(3 )) ))

dxx+x3

Question Number 118340    Answers: 1   Comments: 1

∫_(π/3) ^(π/2) (dx/(1+sin x−cos x))

π/2π/3dx1+sinxcosx

Question Number 118338    Answers: 3   Comments: 0

solve ∫ (dx/(3−5sin x))

solvedx35sinx

Question Number 118318    Answers: 1   Comments: 0

Question Number 118307    Answers: 2   Comments: 1

∫^∞ _0 ((x^2 −2)/(x^4 +x^2 +1)) dx

0x22x4+x2+1dx

Question Number 118292    Answers: 2   Comments: 0

Prove that: ∫_0 ^( 1) ((x^n −1)/(lnx)) = ln∣n+1∣

Provethat:01xn1lnx=lnn+1

Question Number 118270    Answers: 0   Comments: 1

∫x a^x (1−a)^(1−x) dx?

xax(1a)1xdx?

  Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com