Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 129

Question Number 119852    Answers: 1   Comments: 0

lim_(n→∞) n^2 ∫ _0 ^(1/n) x^(x+1) dx =?

limnn21n0xx+1dx=?

Question Number 119784    Answers: 2   Comments: 0

∫ (dx/( (√((4x−x^2 )^3 ))))

dx(4xx2)3

Question Number 119773    Answers: 3   Comments: 0

∫_(−4) ^4 x^3 (√(16−x^2 )) sec x dx

44x316x2secxdx

Question Number 119821    Answers: 3   Comments: 0

∫_(−3) ^0 ((6x−6)/( (√(x^2 −2x+1)))) dx =?

036x6x22x+1dx=?

Question Number 119762    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ((x^4 dx)/((2x+1)^5 (3x+1)^8 ))

calculate0x4dx(2x+1)5(3x+1)8

Question Number 119752    Answers: 1   Comments: 0

find I_λ =∫_0 ^∞ ((ch(1+λcosx))/((x^2 +1)^2 ))dx (λ real >0)

findIλ=0ch(1+λcosx)(x2+1)2dx(λreal>0)

Question Number 119750    Answers: 1   Comments: 0

Π_(k=1) ^(1019) [((2k)/(2k−1))]=?

1019k=1[2k2k1]=?

Question Number 119696    Answers: 2   Comments: 0

For a<b then ∫_a ^b (x−a)(x−b) dx equal to _

Fora<bthenba(xa)(xb)dxequalto_

Question Number 119681    Answers: 4   Comments: 0

∫_0 ^π (√((1+cos2x)/2)) dx ∫_0 ^∞ [ne^(−x) ]dx

0π1+cos2x2dx0[nex]dx

Question Number 119570    Answers: 3   Comments: 0

... ♣_♣ ^♣ nice calculus♣_♣ ^♣ ... prove that :: Ω=∫_0 ^( ∞) e^(−2x) ln(((1+e^(−x) )/(1−e^(−x) )))=1 ...★ M.N.1970★...

...nicecalculus...provethat::Ω=0e2xln(1+ex1ex)=1...M.N.1970...

Question Number 119591    Answers: 0   Comments: 6

...nice calculus... prove that :: ∫_0 ^( (π/2)) (√(((2^x −1)sin^3 (x))/((2^x +1)(sin^3 (x)+cos^3 (x))))) dx<(π/8) ...m.n.1970...

...nicecalculus...provethat::0π2(2x1)sin3(x)(2x+1)(sin3(x)+cos3(x))dx<π8...m.n.1970...

Question Number 119462    Answers: 2   Comments: 0

... advanced calculus... evaluate :: Ω=∫_0 ^( ∞) ((tan^(−1) (x))/(e^(2πx) −1))dx =? m.n.1970

...advancedcalculus...evaluate::Ω=0tan1(x)e2πx1dx=?m.n.1970

Question Number 119446    Answers: 0   Comments: 0

calculste ∫_0 ^∞ ((ln(2+x^2 ))/(1+x^3 ))dx

calculste0ln(2+x2)1+x3dx

Question Number 119445    Answers: 0   Comments: 0

...nice calculus... prove that:: Σ_(n=1) ^∞ (((−1)^(n−1) )/(n^3 (((2n)),(n) ))) =^(???) ζ(3) m.n.1970

...nicecalculus...provethat::n=1(1)n1n3(2nn)=???ζ(3)m.n.1970

Question Number 119442    Answers: 0   Comments: 0

... advanced calculus... prove that : Σ_(n=1) ^∞ (1/(n^2 (((2n)),(n) ))) =^(???) ((ζ(2))/3) solution:: Σ_(n=1) ^∞ (1/(n^2 ∗(((2n)!)/((n!)^2 ))))=Σ_(n=1) ^∞ ((n!∗n!)/(n^2 ∗(2n)!)) =Σ_(n=1) ^∞ ((Γ(n)Γ(n+1))/(nΓ(2n+1)))=Σ_(n=1) ^∞ ((β(n,n+1))/n) =Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) x^(n−1) (1−x)^n =∫_0 ^( 1) (1/x)Σ(((x−x^2 )^n )/n)dx =−∫_0 ^( 1) ((ln(1−x+x^2 ))/x)dx =−∫_0 ^( 1) ((ln(1+x^3 )−ln(1+x))/x)dx =∫_0 ^( 1) ((ln(1+x))/x)dx −∫_0 ^( 1) ((ln(1+x^3 ))/x)dx =−li_2 (−1) −∫_0 ^( 1) ((Σ_(n=1) (((−1)^(n+1) x^(3n) )/n))/x) dx =(π^2 /(12))+Σ_(n=1) ^∞ (((−1)^n )/n)∫_0 ^( 1) x^(3n−1) dx =(π^2 /(12)) +(1/3)Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(π^2 /(12))−(π^2 /(36)) =(π^2 /(18)) =((ζ(2))/3) ✓✓ m.n.july.1970..

...advancedcalculus...provethat:n=11n2(2nn)=???ζ(2)3solution::n=11n2(2n)!(n!)2=n=1n!n!n2(2n)!=n=1Γ(n)Γ(n+1)nΓ(2n+1)=n=1β(n,n+1)n=n=11n01xn1(1x)n=011xΣ(xx2)nndx=01ln(1x+x2)xdx=01ln(1+x3)ln(1+x)xdx=01ln(1+x)xdx01ln(1+x3)xdx=li2(1)01n=1(1)n+1x3nnxdx=π212+n=1(1)nn01x3n1dx=π212+13n=1(1)nn2=π212π236=π218=ζ(2)3m.n.july.1970..

Question Number 119425    Answers: 1   Comments: 0

decompose F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3))) and calculate ∫_(√2) ^(+∞) F(x)dx

decomposeF(x)=2x1(x21)2(x2+3)andcalculate2+F(x)dx

Question Number 119335    Answers: 2   Comments: 0

Express f(x) = (1/((x−1)^2 (x^2 +1))) into partial fractions. hence evaluate I = ∫_0 ^4 f(x) dx

Expressf(x)=1(x1)2(x2+1)intopartialfractions.henceevaluateI=40f(x)dx

Question Number 119323    Answers: 1   Comments: 4

Question Number 119306    Answers: 3   Comments: 0

Question Number 119282    Answers: 1   Comments: 0

... nice calculus... evaluate:: I:= ∫_0 ^( 1) li_2 (1−x^2 )dx=?? .m.n.1970.

...nicecalculus...evaluate::I:=01li2(1x2)dx=??.m.n.1970.

Question Number 119318    Answers: 0   Comments: 0

find ∫_0 ^∞ ((lnx)/(x^4 +x^2 +2))dx

find0lnxx4+x2+2dx

Question Number 119317    Answers: 0   Comments: 0

calculate ∫_0 ^(2π) (dθ/((x^2 −2cosθ x+1)^2 ))

calculate02πdθ(x22cosθx+1)2

Question Number 119262    Answers: 3   Comments: 0

∫ (x^2 /( (√((4−x^2 )^5 )))) dx

x2(4x2)5dx

Question Number 119256    Answers: 0   Comments: 0

Determine ∫_(−(π/4)) ^( (π/4)) (cost+(√(1+t^2 sin^3 tcos^3 t))dt=?

Determineπ4π4(cost+1+t2sin3tcos3tdt=?

Question Number 119151    Answers: 0   Comments: 0

Question Number 119070    Answers: 2   Comments: 0

∫ ((x^2 −x+6)/(x^3 +3x)) dx ∫ ((5x^2 +3x−2)/(x^3 +2x^2 )) dx

x2x+6x3+3xdx5x2+3x2x3+2x2dx

  Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132      Pg 133   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com