Question and Answers Forum |
IntegrationQuestion and Answers: Page 131 |
![]() |
...nice calculus... prove that :: ∫_0 ^( (π/2)) (√(((2^x −1)sin^3 (x))/((2^x +1)(sin^3 (x)+cos^3 (x))))) dx<(π/8) ...m.n.1970... |
∫ ((8x+sin^(−1) (2x))/( (√(1−4x^2 )))) dx |
∫ (dx/((x−2)(x^2 +4))) =? |
∫_1 ^(√3) ((√(1+x^2 ))/x^2 ) dx ? |
Solve for X(x,y,z), Y(x,y,z), Z(x,y,z) { (((∂Z/∂y)−(∂Y/∂z)=1−x^2 )),(((∂Z/∂x)−(∂X/∂z)=−(y^2 /2))),(((∂Y/∂x)−(∂X/∂y)=z(2x−y))) :} where { ((X(x,y,0)=0)),((Y(x,y,0)=0)),((Z(x,y,z)=0)) :} |
Hi Prove that: ∫_(-∞) ^(+∞) -e^(-x^2 ) dx=(√π) Thanks beforehand |
... calculus ... prove that :: ∫_0 ^( 1) (((1−x^p )(1−x^q )x^(r−1) )/(log(x)))dx=^(???) log( (((p+q+r+1)r)/((p+r)(q+r))) ) m.n.1970 |
... (( nice)/(calculus)) ... prove that :: ∫_(−1) ^( ∞) (e^(−4x) /( (√(x+1)))) dx =((√π)/2) e^4 ... m.n .1970... |
the curve y=f(x) is rotated about the x−axis to form solid.the volume of this solid is 0.5π(a−2sina cosa) for the limit of 0≤x≤a. find the value of a |
determine the area of the region bounded by y=(2x+6)^(0.5 ) and y=x−1 |
find the lenght of the function y=sinx for 0<x<π |
![]() |
∫ (dx/(x+x(√x))) =? |
Help please, to solve this ... If f(x)=1+x^2 for x∈[−2,2] and f(x)=5 otherwise. Then what is the value of ∫_(−2) ^(+2) f(2x^2 )dx? |
... nice calculus ... prove that : I = ∫_0 ^( 1) ((π/4) −Arctan(x))(dx/(1−x^2 )) = (G/2) ✓ G is catalan constant ... M.N.1970 |
... nice calculus... very nice integral:: demonstrate::: Ω = ∫_0 ^( 1) ((1−x)/((1+x+x^2 +x^3 )log(x))) dx=^(???) log((√(1/2))) .m.n.1970. |
∫(dx/( ((1+x^3 ))^(1/3) ))=? |
∫xdx |
... nice calculus... please evaluate :: Φ = (((∫_0 ^( (π/2)) ((e^x +e^(−x) )/(sin(x)+cos(x)))dx)^2 )/((∫_0 ^( (π/2)) (e^x /(sin(x)+cos(x)))dx)(∫_0 ^( (π/2)) (e^(−x) /(sin(x)+cos(x)))dx))) =??? m.n.1970 |
Π_(n=1) ^∞ (((a^2 n^2 )/((an)^2 −1))))=??? |
∫ ((√x)/(1+x^3 )) dx =? |
1) explicite ∫_0 ^∞ ((arctan(1+x(2+t^2 )))/(2+t^2 ))dt withx>0 2)determine values of ∫_0 ^∞ ((arctan(3+t^2 ))/(2+t^2 ))dt and ∫_0 ^∞ ((arctan(5+2t^2 ))/(2+t^2 ))dt |
∫ (dx/(x+(x)^(1/(3 )) )) ? |
if arctan(x+iy) =a+ib with a and b reals determine a and b |
calculate ∫_0 ^∞ ((ln(1+x(1+t^2 ))/(1+t^2 )) dt with x>0 2) find the value of ∫_0 ^∞ ((ln(2+t^2 ))/(1+t^2 ))dt and ∫_0 ^∞ ((ln(3+2t^2 ))/(1+t^2 ))dt |
Pg 126 Pg 127 Pg 128 Pg 129 Pg 130 Pg 131 Pg 132 Pg 133 Pg 134 Pg 135 |