Question and Answers Forum |
IntegrationQuestion and Answers: Page 133 |
1) explicite f(a) =∫_(−∞) ^(+∞) ((arctan(a+x))/(x^2 +4))dx 1) 1)calculate ∫_(−∞) ^(+∞) ((arctan(1+x))/(x^2 +4))dx and ∫_(−∞) ^(+∞) ((arctan(3+x))/(x^2 +4))dx |
∫_0 ^(π/3) ((sin 2x)/((sin x)^(4/3) )) dx |
... advanced math ... evaluate that : Ω=∫_0 ^( 1) [(1/(ln(x))) +(1/(1−x)) ]^2 dx=??? m.n |
∫_0 ^(π/2) ln(x^2 +ln^2 (cos(x)))dx=πln(ln(2)) posted Quation not solved yet i hop someon Giv idea for this one thank you |
1)explicite U_n =∫_0 ^∞ e^(−n[x]) cos(3[x])dx 2) calculate lim_(n→+∞) U_n 3)find nsture of Σ U_n |
find ∫_0 ^1 ((arctan(x^2 +3))/(x^2 +3))dx |
calculate ∫_(−∞) ^∞ ((arctan(2+x^2 ))/(x^2 −x +1))dx |
find the value of I =∫_0 ^∞ ((ch(cos(2x)))/(x^2 +9))dx and J =∫_0 ^∞ ((cos(ch(2x)))/(x^2 +9))dx |
calculate ∫_1 ^∞ (dx/((2x^2 −1)^5 )) |
∫ (√(5cos^2 x+4)) dx ? |
∫ sec x tan x (√(tan^2 x−3)) dx ? |
∫_0 ^π ((ln (1+(1/2)cos x))/(cos x)) dx ? |
Σ_(n=0) ^∞ ((2n+1)/(16^n (n^2 +3n+2))) (((2n)),(n) )^2 =(8/(3π)) m.n.july 1970. |
please solve : ∫_0 ^( (π/4)) tan^9 (x)dx =??? |
show that ∫_( 0) ^( ∞) ((lnx)/(1+x^2 ))dx = 0 |
Study according to the values of the real α the convergence of the integral ∫_α ^(+∞) ((ln∣x∣)/( ((x(x+1)))^(1/3) ))dx |
1)calculate f(x)=∫_0 ^(2π) (dθ/(x^2 −2x cosθ +1)) 0<θ<(π/2) 2)explicite ∫_0 ^(2π) ((cosθ)/((x^2 −2xcosθ +1)^2 ))dθ |
calculate ∫_0 ^∞ ((lnx)/(x^4 +1))dx |
find ∫_0 ^∞ ((lnx)/(x^2 −i))dx (i=(√(−1))) |
∫_(−1) ^1 (dx/( (√(6+x−x^2 )))) ? |
...nice calculus ... prove : i:∫_0 ^( ∞) ((ln(x))/((1+x^(√2) )^(√2) )) =0 ✓ ii: ∫_0 ^( ∞) (dx/((1+x^(1+(√2)) )^(1+(√2)) )) =(1/( (√2))) ✓ iii: ∫_0 ^( (π/2)) ln(x^2 +ln^2 (cos(x)))dx=πln(ln(2))✓ ... m.n. july.1970... |
U(n)=∫_0 ^∞ ((1−tanh x)/( ((tanh x))^(1/n) ))dx another way? |
∫((e^(3x) −e^x )/(x(e^(3x) +1)(e^x +1)))dx = ? |
calculate ∫_1 ^(+∞) (dx/((4x^2 −1)^3 )) |
prove that :: ∫_0 ^( ∞) (tanh^a (x) −tanh^b (x))dx =^(???) ((ψ(((b+1)/2))−ψ(((a+1)/2)))/2) m.n.july.1970 |
∫ ((sec^4 x dx)/( (√(tan^3 x)))) =? |
Pg 128 Pg 129 Pg 130 Pg 131 Pg 132 Pg 133 Pg 134 Pg 135 Pg 136 Pg 137 |