Question and Answers Forum |
IntegrationQuestion and Answers: Page 134 |
![]() |
... advanced calculus... evaluate :: ∫_0 ^( ∞) ln(1+ax^2 )ln(1+(b/x^2 ))dx m.n.july |
![]() |
![]() |
![]() |
.... ...matematical analysis... prove that ::: a>0 :: [((i : ∫_(0 ) ^( ∞) ((sin^2 (ax))/x^(3/2) ) dx= (√(πa)))),((ii: ∫_0 ^( ∞) ((sin^3 (ax))/( (√x))) dx = ((−1+3(√(3 )))/4) (√((π/(6a)) )) )) ] ...m.n.july.1970... |
I= ∫_0 ^1 (dx/((1+x^3 )((1+x^3 ))^(1/(3 )) )) ? I=∫_0 ^(π/2) cos^2 x cos^2 (2x) dx = ? |
calculate ∫_(−∞) ^∞ (x^2 /((x^2 −x+1)^3 ))dx |
I= ∫_(0 ) ^1 x ln (1+x^2 ) dx ? I=∫ (√(sin x)) .cos^3 x dx ? |
solve xy^(′′) −(x^2 +1)y^′ =x^2 sin(2x) |
calculate ∫_(−1) ^2 (dx/(ch^2 x +sh^2 x)) |
calculate ∫∫_([0,1]^2 ) ((arctan(xy))/( (√(x^2 +y^2 ))))dxdy |
calculate ∫∫_([0,1]^2 ) (√(xy))(x^2 +y^2 )dxdy |
calculate ∫_0 ^1 ((sinx)/(1+x^2 ))dx |
find ∫_0 ^∞ ((cos(πx^2 ))/((x^2 +3)^2 ))dx |
If f(x) is a differentiable function defined ∀x∈R such that (f(x))^3 −x+f(x)=0 then ∫_0 ^(√2) f^(−1) (x) dx = |
...advanced mathematics... :: digamma limit :: if k>0 then prove that lim_(x→0) (1/x)(ψ(((k+x)/(2x))) − ψ((k/(2x)))) =(1/k) ✓ m.n.july.1970... |
∫ sin^2 (ln x) dx |
...mathematical analysis... prove that: Ω=∫_0 ^( 1) (((x^8 +1)ln(x))/(x^(10) −1)) dx=((π^2 ϕ^2 )/(25)) ✓ m.n.july 1970 |
∫_0 ^(π/2) ((cos x)/( (√(1−sin x)))) dx ? |
.... nice calculus ... a , b , c , d ∈N and (1/a)+(1/b)+(1/c)+(1/d)=(1/2) find max(a+b+c+d) =??? ...m.n.july.1970... |
... nice calculus... evaluation : χ=∫_0 ^( 1) log(1−x).log(1+x) =??? ...m.n.july.197o... |
∫x^2 (√(x^2 −2))dx |
∫_(−(π/2)) ^(π/2) (√(sec x−cos x)) dx =? |
Solve: ∫_(1/π) ^(1/2) ln ⌊(1/x)⌋dx |
∫_C (e^z /(1−cos z))dz ; C:∣z∣=1 |
Pg 129 Pg 130 Pg 131 Pg 132 Pg 133 Pg 134 Pg 135 Pg 136 Pg 137 Pg 138 |