Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 141

Question Number 111499    Answers: 0   Comments: 0

Question Number 111429    Answers: 1   Comments: 0

please evaluate : .... I=∫_0 ^( (π/2)) ((1/(ln(tan(x)))) + (1/(1−tan(x))))dx =??? ::: M. N.july 1970 :::

pleaseevaluate:....I=0π2(1ln(tan(x))+11tan(x))dx=???:::M.N.july1970:::

Question Number 111357    Answers: 0   Comments: 0

∫_0 ^1 ((tan^(−1) x)/(1+x^3 ))dx

01tan1x1+x3dx

Question Number 111195    Answers: 2   Comments: 0

(√(bemath)) ∫ (dx/( ((x−1))^(1/(3 )) (((x+1)^2 ))^(1/(3 )) )) ?

bemathdxx13(x+1)23?

Question Number 111189    Answers: 4   Comments: 0

(1) ∫ (((x+1)dx)/(x^4 (x−1))) ? (2) (dy/dx) + (y/(x−2)) = 5(x−2)(√y)

(1)(x+1)dxx4(x1)?(2)dydx+yx2=5(x2)y

Question Number 111174    Answers: 0   Comments: 0

following the newest trend − what do I say!? − ahead of it, of course! I post this answer to one of the next questions, look out for it so you won′t miss it! I=I_1 −2I_2 =ξ(5)+Γ(7/3)−2/(√π)+C

followingthenewesttrendwhatdoIsay!?aheadofit,ofcourse!Ipostthisanswertooneofthenextquestions,lookoutforitsoyouwontmissit!I=I12I2=ξ(5)+Γ(7/3)2/π+C

Question Number 111109    Answers: 0   Comments: 0

Question Number 111104    Answers: 2   Comments: 2

Question Number 111048    Answers: 0   Comments: 0

Question Number 111083    Answers: 2   Comments: 0

(√(bemath)) (1)∫ (dx/(3sin x+sin^3 x)) (2) lim_(x→∞) x(5^(1/x) −1) (3) find the asymptotes (x^2 /a^2 ) − (y^2 /b^2 ) = 1

bemath(1)dx3sinx+sin3x(2)limxx(51x1)(3)findtheasymptotesx2a2y2b2=1

Question Number 111082    Answers: 1   Comments: 1

[∫_0 ^∞ JS dx ] ∫_0 ^(π/2) ((sin (x)(4+sin^2 (x)))/((4−sin^2 (x))^2 )) dx ?

[0JSdx]π20sin(x)(4+sin2(x))(4sin2(x))2dx?

Question Number 111027    Answers: 0   Comments: 0

★((log _(JS) (farmer))/)★ (1)∫ ((tan (ln x)tan (ln ((x/2)))dx)/x) (2) sin (cos x) < cos (sin x) ; where 0≤x≤2π

logJS(farmer)(1)tan(lnx)tan(ln(x2))dxx(2)sin(cosx)<cos(sinx);where0x2π

Question Number 111025    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((x^2 ln(x))/((1+x)^4 ))dx

calculate0x2ln(x)(1+x)4dx

Question Number 111024    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((x^2 lnx)/((1+x^2 )^3 ))dx

calculate0x2lnx(1+x2)3dx

Question Number 111010    Answers: 1   Comments: 0

∫e^x tanx dx

extanxdx

Question Number 111017    Answers: 2   Comments: 0

(√(bemath)) ∫ (dx/( ((4−((3−2x))^(1/(3 )) ))^(1/(4 )) )) ?

bemathdx432x34?

Question Number 110875    Answers: 4   Comments: 0

(1)∫_e ^e^e ((ln (x).ln (ln (x)))/x) dx ? (2)lim_(x→π/4) ((cosec^2 x−2)/(cot x−1)) (3) Given { ((xy=((16y−9x)/(45)))),(((4/( (√x)))−(3/( (√y))) = 5)) :} ⇒find 9(√(xy))

(1)eeeln(x).ln(ln(x))xdx?(2)limxπ/4cosec2x2cotx1(3)Given{xy=16y9x454x3y=5find9xy

Question Number 110800    Answers: 0   Comments: 0

∫((sin(x))/(x^2 +1))dx

sin(x)x2+1dx

Question Number 110772    Answers: 0   Comments: 0

lim_(n→∞) (1+Σ_(r=1) ^n (1/(3^r r!))Π_(k=1) ^r (2k−1))

limn(1+nr=113rr!rk=1(2k1))

Question Number 110749    Answers: 1   Comments: 0

please evaluate : Ω=∫_0 ^( (1/2)) ((ln^2 (1−x))/x) dx=??? M.N.July 1970# .... Good luck....

pleaseevaluate:Ω=012ln2(1x)xdx=???You can't use 'macro parameter character #' in math mode....Goodluck....

Question Number 118674    Answers: 1   Comments: 0

Please integrate ∫_0 ^1 (1/(1+x^c ))dx where c is a constant.

Pleaseintegrate0111+xcdxwherecisaconstant.

Question Number 110551    Answers: 2   Comments: 0

Question Number 110549    Answers: 2   Comments: 1

Question Number 110543    Answers: 1   Comments: 0

Question Number 110888    Answers: 3   Comments: 0

....calculus.... please solve : Ω_1 =∫_0 ^( (π/4)) ((√(tan(x))) +(√(cot(x))) )dx=?? Ω_2 =∫_0 ^(π/4) tan(x)ln((1+tan^2 (x)))dx =?? ...M.N.july 1970#... Good luck

....calculus....pleasesolve:Ω1=0π4(tan(x)+cot(x))dx=??Ω2=0π4tan(x)ln((1+tan2(x)))dx=??You can't use 'macro parameter character #' in math modeGoodluck

Question Number 110451    Answers: 1   Comments: 0

calculate U_n =∫_([(1/n),n[^2 ) (x^2 −y^2 )e^(−x^2 −y^2 ) dxdy and lim_(n→+∞) U_n

calculateUn=[1n,n[2(x2y2)ex2y2dxdyandlimn+Un

  Pg 136      Pg 137      Pg 138      Pg 139      Pg 140      Pg 141      Pg 142      Pg 143      Pg 144      Pg 145   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com