Question and Answers Forum |
IntegrationQuestion and Answers: Page 149 |
![]() |
∫_0 ^1 log(tanθ)dθ |
∫ (dx/(9+16cos^2 x)) ? |
![]() |
Please, I need help. Exercise We have : J_n = ∫_0 ^( (π/4)) tan^n (x) dx 1) Establish a recurrence relation between J_(n+2) and J_n . 2) Calculate J_0 and J_1 , then deduce the expression of J_n as a function of n. The deduction of the last question, please. |
∫ (dx/(√(x(√x) −x^2 ))) ? |
∫ ((x^2 +sin^2 x)/(x^2 +cos^2 x)) dx |
![]() |
∫ (√(x−(√x))) dx |
∫_(−π) ^π ((x^2 dx)/(1+sin (sin x)+(√(1+sin^2 (sin x))))) |
![]() |
∫ ((x−1)/(x+x^2 ln x)) dx ? |
let f(x) =x^2 ln(1−x^3 ) 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie 3)calculate ∫ f(x)dx |
Σ_(k=1) ^n ((1/k))^2 |
∫_(−1) ^1 ((e^x −e^(−x) )/(cos x)) dx |
∫tanx∙tan2x∙tan3x∙dx Any way to solve this without the use of partial fractions? |
∫_0 ^(π/2) ln (cos x) dx |
∫((x^2 +3)/(x^6 (x^2 +1)))dx Is there any special method of decomposition other than the use of partial fractions ? |
calculate ∫_(−∞) ^(+∞) ((x^2 dx)/((x^2 +x+1)^2 (2x^2 +3))) |
∫_(−π) ^π ((x sin x dx)/((1+x+(√(1+x^2 )))(√(3+sin^2 x)))) |
∫ (x^3 /(√((a^2 +x^2 )^3 ))) dx |
solve y^(′′ ) +2y^′ −y =x^n e^(−x) n integr natural |
calculate ∫_0 ^∞ ((ch(cosx)−cos(chx))/(x^2 +3))dx |
calculate ∫_0 ^∞ ((cos(2x^2 ))/((4x^2 +9)^3 ))dx |
calculate ∫_0 ^(+∞) ((2x^2 −1)/((x^2 +x+1)^2 (x^2 −x+1)^2 ))dx |
calculate ∫_1 ^(+∞) (dx/((x^2 +1)^2 (x^2 +4)^2 )) |
Pg 144 Pg 145 Pg 146 Pg 147 Pg 148 Pg 149 Pg 150 Pg 151 Pg 152 Pg 153 |