Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 150

Question Number 103974    Answers: 2   Comments: 0

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)(x^2 +3)^2 ))

calculate+dx(x2x+1)(x2+3)2

Question Number 103871    Answers: 1   Comments: 2

∫_0 ^1 ((x^(98) −99x+98)/(logx))dx

01x9899x+98logxdx

Question Number 103863    Answers: 8   Comments: 0

Question Number 103860    Answers: 2   Comments: 0

find ∫ (dx/(cos^4 x))

finddxcos4x

Question Number 103846    Answers: 0   Comments: 2

∫(dx/(x^(1/3) +2))

dxx13+2

Question Number 103825    Answers: 7   Comments: 0

∫ (dx/((1−sinx)^2 )) ?

dx(1sinx)2?

Question Number 103773    Answers: 1   Comments: 0

∫_c ((x^2 +2xy^2 )dx+(x^2 y^2 −1)dy) where C is the boundary of region define by y^2 = 4x and y =1 ?

c((x2+2xy2)dx+(x2y21)dy)whereCistheboundaryofregiondefinebyy2=4xandy=1?

Question Number 103742    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (dx/((2x+1)^4 (x+3)^5 ))

calculate0dx(2x+1)4(x+3)5

Question Number 103741    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((arctan(ch(x)))/(x^2 +9))dx

calculate0arctan(ch(x))x2+9dx

Question Number 103723    Answers: 0   Comments: 0

Solve for n, such that; 1−(1/2)+∙∙∙+(((−1)^n )/(n+1))=∫_0 ^1 (x^(n+1) /(1+x))dx−ln2−(−1)^(n+1)

Solveforn,suchthat;112++(1)nn+1=01xn+11+xdxln2(1)n+1

Question Number 103683    Answers: 1   Comments: 1

∫_0 ^1 tan^(−1) (((2x−1)/(1+x−x^2 )))dx

01tan1(2x11+xx2)dx

Question Number 103607    Answers: 1   Comments: 0

what is the value of ∫_c (x+2y)dx+(4−2x)dy around the ellipse C: (x^2 /(16))+(y^2 /8)=1 in the counterclockwise direction ?

whatisthevalueofc(x+2y)dx+(42x)dyaroundtheellipseC:x216+y28=1inthecounterclockwisedirection?

Question Number 103593    Answers: 1   Comments: 0

calculate ∫_(−∞) ^∞ (dx/((x^2 +x +1)^2 (2x^2 +5)^2 ))

calculatedx(x2+x+1)2(2x2+5)2

Question Number 103591    Answers: 1   Comments: 4

calculate ∫_3 ^(+∞) (dx/((x^2 −1)^3 (x+2)^2 ))

calculate3+dx(x21)3(x+2)2

Question Number 103721    Answers: 2   Comments: 0

∫_0 ^∞ ((cosx)/(x^2 +1))dx

0cosxx2+1dx

Question Number 103515    Answers: 1   Comments: 0

given f(x) = f(x+(π/6)) ∀x∈R if ∫_0 ^(π/6) f(x)dx = T then ∫_π ^(7π/3) f(x+π) dx ?

givenf(x)=f(x+π6)xRifπ/60f(x)dx=Tthen7π/3πf(x+π)dx?

Question Number 103512    Answers: 2   Comments: 2

∫ ((x dx)/((cot x+tan x)^2 )) = (a) (x/(16))−((x sin 4x)/(32))−((cos 4x)/(128))+c (b) (x/(16))+((x sin 4x)/(32))−((cos 4x)/(128))+c (c) (x/(16))+((xsin 4x)/(64))+((cos 4x)/(128))+c (d)(x/(16))+((xcos 4x)/(32))+((sin 4x)/(128))+c

xdx(cotx+tanx)2=(a)x16xsin4x32cos4x128+c(b)x16+xsin4x32cos4x128+c(c)x16+xsin4x64+cos4x128+c(d)x16+xcos4x32+sin4x128+c

Question Number 103511    Answers: 1   Comments: 1

∫ (dx/((√x) ((x)^(1/4) +1))) =__ (a) −((9 (x)^(1/4) +1)/(18((x)^(1/4) +1)^9 )) + c (b) ((9 (x)^(1/4) +1)/(18((x)^(1/4) +1)^9 )) +c (c) −((9 (x)^(1/4) −1)/(18((x)^(1/4) +1)^9 )) +c (d) ((9 (x)^(1/4) +1)/(8((x)^(1/4) +1)^9 )) + c

dxx(x4+1)=__(a)9x4+118(x4+1)9+c(b)9x4+118(x4+1)9+c(c)9x4118(x4+1)9+c(d)9x4+18(x4+1)9+c

Question Number 103537    Answers: 1   Comments: 0

∫(x/((a^2 cosx+b^2 sinx)))dx

x(a2cosx+b2sinx)dx

Question Number 103454    Answers: 1   Comments: 0

∫ (x^2 +2x^4 +3x^6 )(√(1+x^2 +x^4 )) dx

(x2+2x4+3x6)1+x2+x4dx

Question Number 103397    Answers: 1   Comments: 0

I(n)=∫_0 ^∞ ((ln x)/(cosh^n x ))dx is there a simpler way to calculat those values

I(n)=0lnxcoshnxdxisthereasimplerwaytocalculatthosevalues

Question Number 103343    Answers: 1   Comments: 0

∫_0 ^1 x^(−x) dx

01xxdx

Question Number 103312    Answers: 4   Comments: 0

∫_0 ^∞ (1/((1+x^2 )^6 )) dx ?

01(1+x2)6dx?

Question Number 103241    Answers: 0   Comments: 0

∫x^(−x) dx

xxdx

Question Number 103220    Answers: 1   Comments: 0

∫_0 ^∞ (x^3 /(e^x +1))dx

0x3ex+1dx

Question Number 103198    Answers: 4   Comments: 1

∫_0 ^1 sin(logx)dx

01sin(logx)dx

  Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151      Pg 152      Pg 153      Pg 154   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com