Question and Answers Forum |
IntegrationQuestion and Answers: Page 154 |
Σ_(Σ_(p=5) ^6 p) ^(Σ_(p=8) ^(11) p) ∫_(11) ^(13) (((12ky)/x^2 ) + 6x) dx = Σ_(Σ_(p=4) ^7 p) ^(Σ_(p=9) ^(12) p) ∫_(11) ^(16) (x^2 y−(3/2)k)dx solve for y |
∫_(1/e) ^(tanx) (t/(1+t^2 ))dt + ∫_(1/e) ^(cotx) (1/(t(1+t^2 )))dt |
lim_(n→∞ ) Σ_(r=1) ^(4n) ((√n)/((√r)(3(√r)+4(√n))^2 )) |
(1)∫ ((sec^4 x tan x)/(sec^4 x+4)) dx= (2) ∫x^(2x) (2lnx +2) dx = (3) ∫_0 ^1 (√(1−x^2 )) dx = |
this i a beautifull old question in the forum by sir.Ali Esam i Reposted it trying to find any idea to solve I=∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x))))dx i solved it numerical the value is 2.03383 |
∫(√(sec x)) dx |
find ∫ ((xdx)/((√(x^2 +x+1))+(√(x^2 −x+1)))) |
calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^2 (x+2)^2 (x+3)^2 )) |
calculate ∫_4 ^(+∞) (dx/((x−2)^5 (x+3)^7 )) |
calculate ∫_(−∞) ^∞ ((cos(arctan(2x+1)))/(x^2 +2x+2))dx |
calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^3 (x+2)^4 )) |
∫(((x^m −x^n )^2 )/(√x))dx=? |
Show that the greatest integer function is Riemann integrable within all segments of R |
∫∫_D (√(x^2 +y^2 ))dxdy D= { (((x,y)∈R, x^2 +y^2 ≥2y, x^2 +y^2 ≤1)),((x≥0 , y≥0)) :} |
∫(((x^m −x^n ))/(√x))dx=? |
∫_0 ^1 (((x−1) dx )/((x+1)ln (x))) |
∫ (x/(1+sin x)) dx |
∫ ((((√x)−x)^2 )/x^2 ) dx ? |
∫_0 ^∞ ((sin(logx))/(logx))dx |
Find the area bounded the curves f(x)= ∣x^3 −4x^2 +3x∣ and x−axis |
![]() |
∫tan^(1/5) x cotx secxdx |
Show that ∫_(−∞) ^(+∞) (dx/(1+(x+tanx)^2 )) = π |
∫_0 ^∞ ((sinx)/x)dx |
∫_(−∞) ^∞ ((log(sin^2 x))/(1+x+e^x ))dx |
find ∫_(−∞) ^∞ ((sin(cosx))/((x^2 −x+1)^2 ))dx |
Pg 149 Pg 150 Pg 151 Pg 152 Pg 153 Pg 154 Pg 155 Pg 156 Pg 157 Pg 158 |