Question and Answers Forum |
IntegrationQuestion and Answers: Page 159 |
calculate: ∫(√x)sinh^(−1) (x)dx where sinh^(−1) (x) is the inverse hyperbolic sine function |
∫(1/(x^2 +1))dx=? |
Let I_y = ∫_(−2) ^2 [y^3 cos ((y/2)) + (1/2)]((√(4−y^2 )) ) dy then I_y = ??? |
∫tan^(1/5) x.cotx.secxdx |
let g(x) =((cosx +1)/(cos(2x)−3)) developp f at fourier serie |
calculate ∫ ((x+1−(√(2x+3)))/(x−2 +(√(x+1)))) dx |
Find[]the[]integral[]of[] ∫(dt/(√((1+t^(10) )))) |
![]() |
find the range f(x)=log_4 log_2 log_(1/2) (x) |
calculate ∫_0 ^∞ ((lnx)/((x+1)^4 ))dx |
calculate ∫_0 ^∞ (dx/(x^8 +x^4 +1)) |
![]() |
Given ∫_0 ^∞ (dx/(a^2 +x^2 )) = (π/(2a)) find ∫_0 ^∞ (dx/((a^2 +x^2 )^3 )) ? |
∫ _0 ^∞ (dx/(a^2 +x^2 )) = ? |
∫_0 ^∞ (((x−1))/(ln(F(x)(√5)+cos(πx)(ϕ)^(−x) −1)(√(F(x)(√5)+cos(πx)(ϕ)^(−x) −1))))dx F(x)=Fib(x)=xth Extended fibonacci number f:R→R ϕ=((1+(√5))/2) |
∫_0 ^π ∫_0 ^(2sinθ) (1+rsinθ)r dr dθ |
let f(x) =arctan((3/x)) 1) calculste f^((n)) (x) and f^((n)) (1) 2) developp f at integr seri at point x_0 =1 |
calculate ∫_0 ^∞ (dx/(x^4 +x^2 +1)) 1) by using residue theorem 2) by using complex decomposition |
∫((sin(x))/x)dx |
prove that ∫_0 ^∞ ((3+2(√x))/(x^2 +2x+5))dx=4.13049 |
∫_0 ^4 ∫_0 ^(x/4) e^x^2 dx dy |
evaluate ∫_(2/(√3)) ^2 (1/(x^2 (√(4+x^2 ))))dx using the substitution x=2tanθ |
![]() |
calculate ∫_0 ^∞ ((sin(αx^2 ))/(x^2 +4))dx with α real |
calculate ∫_(−∞) ^∞ ((xsin(x))/((x^2 +x+1)^2 ))dx |
calculate ∫_(−∞) ^(+∞) ((cos(αx))/(x^4 +1))dx (α real) |
Pg 154 Pg 155 Pg 156 Pg 157 Pg 158 Pg 159 Pg 160 Pg 161 Pg 162 Pg 163 |