Question and Answers Forum |
IntegrationQuestion and Answers: Page 16 |
find ∫_0 ^∞ (x^3 /((1+x)^4 (x+2)^5 ))dx |
find ∫(√((1−x^3 )/(1+x^3 )))dx |
![]() |
![]() |
![]() |
![]() |
∫_0 ^( ∞) ((sin^( 3) (x))/x^( 2) ) dx= ? |
![]() |
calculate ∫∫_([0,a]^2 ) e^(−x^2 −y^2 ) dxdy can you find ∫_0 ^a e^(−x^2 ) dx ? a>0 |
f(x)={_(2 x=1) ^(7 x≠1 ) ⇒ ∫_0 ^( 4) f(x)dx=? |
![]() |
![]() |
⇃ |
((^3 (√4^(5−x) ))/(∫_4 ^6 (x−1)dx)) = (1/2^(2x−1) ) , find the value of x. Solution (4^((5−x)/3) /(∫_4 ^6 ((x^2 /2)−x+k))) = (1/2^(2x−1) ) (2^(2•((5−x)/3)) /(((6^2 /2)−6+k)−((4^2 /2)−4+k))) = (1/2^(2x−1) ) (2^((10−2x)/3) /(((36)/2)−6+k−((16)/2)+4−k)) = (1/2^(2x−1) ) (2^((10−2x)/3) /(18−6−8+4)) = (1/2^(2x−1) ) (2^((10−2x)/3) /8) = (1/2^(2x−1) ) (Cross Multiply) 2^(2x−1) ×2^((10−2x)/3) = 8×1 2^(2x−1) ×2^((10−2x)/3) = 2^3 2^(2x−1+((10−2x)/3)) = 2^3 (Since, the bases are equal. Then, we can equate the exponents) 2x−1+((10−2x)/3) = 3 (Multiply each term by 3) 3(2x)−3(1)+3(((10−2x)/3)) = 3(3) 6x−3+10−2x = 9 (Collect Like Terms) 4x+7 = 9 4x = 9−7 4x = 2 (Divide Both Sides by 4) ((4x)/4) = (2/4) ∴ x = (1/2) |
If I_n denotes ∫z^n e^(1/z) dz, then show that (n+1)!I_n =I_0 +e^(1/z) (1∙!z^2 +2∙!z^3 +∙∙∙+n!∙z^(n+1) ) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hard integral ∫∫∫∫∫∫∫∫∫ determinant ((a,b,c),(f,g,h),(j,k,l))dl dk dj dh dg df dc db da= |
The value of ∫g′(x)f′(g(x))dx is... |
![]() |
P rove that: ∫ (dx/(b^4 +2ax^2 +c))=((tan^(−1) ((((√2)(√a)x)/( (√(c+b^4 ))))))/( (√2)(√a)(√(c+b^4 ))))+C if a∙(c+b^4 )>0 |
![]() |