Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 16

Question Number 203884    Answers: 1   Comments: 0

find ∫_0 ^∞ (x^3 /((1+x)^4 (x+2)^5 ))dx

find0x3(1+x)4(x+2)5dx

Question Number 203867    Answers: 1   Comments: 0

find ∫(√((1−x^3 )/(1+x^3 )))dx

find1x31+x3dx

Question Number 203836    Answers: 2   Comments: 0

Question Number 203772    Answers: 2   Comments: 0

Question Number 203747    Answers: 2   Comments: 0

Question Number 203679    Answers: 0   Comments: 0

Question Number 203564    Answers: 1   Comments: 0

∫_0 ^( ∞) ((sin^( 3) (x))/x^( 2) ) dx= ?

0sin3(x)x2dx=?

Question Number 203385    Answers: 2   Comments: 0

Question Number 203349    Answers: 1   Comments: 0

calculate ∫∫_([0,a]^2 ) e^(−x^2 −y^2 ) dxdy can you find ∫_0 ^a e^(−x^2 ) dx ? a>0

calculate[0,a]2ex2y2dxdycanyoufind0aex2dx?a>0

Question Number 203186    Answers: 1   Comments: 0

f(x)={_(2 x=1) ^(7 x≠1 ) ⇒ ∫_0 ^( 4) f(x)dx=?

f(x)={2x=17x104f(x)dx=?

Question Number 203047    Answers: 0   Comments: 0

Question Number 202930    Answers: 1   Comments: 0

Question Number 202882    Answers: 3   Comments: 0

Question Number 202636    Answers: 0   Comments: 0

((^3 (√4^(5−x) ))/(∫_4 ^6 (x−1)dx)) = (1/2^(2x−1) ) , find the value of x. Solution (4^((5−x)/3) /(∫_4 ^6 ((x^2 /2)−x+k))) = (1/2^(2x−1) ) (2^(2•((5−x)/3)) /(((6^2 /2)−6+k)−((4^2 /2)−4+k))) = (1/2^(2x−1) ) (2^((10−2x)/3) /(((36)/2)−6+k−((16)/2)+4−k)) = (1/2^(2x−1) ) (2^((10−2x)/3) /(18−6−8+4)) = (1/2^(2x−1) ) (2^((10−2x)/3) /8) = (1/2^(2x−1) ) (Cross Multiply) 2^(2x−1) ×2^((10−2x)/3) = 8×1 2^(2x−1) ×2^((10−2x)/3) = 2^3 2^(2x−1+((10−2x)/3)) = 2^3 (Since, the bases are equal. Then, we can equate the exponents) 2x−1+((10−2x)/3) = 3 (Multiply each term by 3) 3(2x)−3(1)+3(((10−2x)/3)) = 3(3) 6x−3+10−2x = 9 (Collect Like Terms) 4x+7 = 9 4x = 9−7 4x = 2 (Divide Both Sides by 4) ((4x)/4) = (2/4) ∴ x = (1/2)

345x46(x1)dx=122x1,findthevalueofx.Solution45x346(x22x+k)=122x1225x3(6226+k)(4224+k)=122x12102x33626+k162+4k=122x12102x31868+4=122x12102x38=122x1(CrossMultiply)22x1×2102x3=8×122x1×2102x3=2322x1+102x3=23(Since,thebasesareequal.Then,wecanequatetheexponents)2x1+102x3=3(Multiplyeachtermby3)3(2x)3(1)+3(102x3)=3(3)6x3+102x=9(CollectLikeTerms)4x+7=94x=974x=2(DivideBothSidesby4)4x4=24x=12

Question Number 202592    Answers: 0   Comments: 0

If I_n denotes ∫z^n e^(1/z) dz, then show that (n+1)!I_n =I_0 +e^(1/z) (1∙!z^2 +2∙!z^3 +∙∙∙+n!∙z^(n+1) )

IfIndenoteszne1zdz,thenshowthat(n+1)!In=I0+e1z(1!z2+2!z3++n!zn+1)

Question Number 202591    Answers: 1   Comments: 0

Question Number 202543    Answers: 1   Comments: 1

Question Number 202522    Answers: 0   Comments: 0

Question Number 202490    Answers: 2   Comments: 2

Question Number 202485    Answers: 0   Comments: 3

Question Number 202448    Answers: 2   Comments: 0

Question Number 202418    Answers: 1   Comments: 0

Hard integral ∫∫∫∫∫∫∫∫∫ determinant ((a,b,c),(f,g,h),(j,k,l))dl dk dj dh dg df dc db da=

Hardintegral|abcfghjkl|dldkdjdhdgdfdcdbda=

Question Number 202415    Answers: 2   Comments: 0

The value of ∫g′(x)f′(g(x))dx is...

Thevalueofg(x)f(g(x))dxis...

Question Number 202406    Answers: 2   Comments: 0

Question Number 202388    Answers: 1   Comments: 0

P rove that: ∫ (dx/(b^4 +2ax^2 +c))=((tan^(−1) ((((√2)(√a)x)/( (√(c+b^4 ))))))/( (√2)(√a)(√(c+b^4 ))))+C if a∙(c+b^4 )>0

Provethat:dxb4+2ax2+c=tan1(2axc+b4)2ac+b4+Cifa(c+b4)>0

Question Number 202212    Answers: 1   Comments: 1

  Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com