Question and Answers Forum |
IntegrationQuestion and Answers: Page 193 |
find the function of f when this function continue at interval [−∞,0] ∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)] |
![]() |
given f(x) = f(x+(π/6)) , ∀x∈ R if ∫_0 ^(π/6) f(x) dx = T then ∫_π ^((7π)/3) f(x+π) dx = ? |
∫ (dx/(sec x + csc x)) = ? |
∫_0 ^π x ln(sin x) dx = ? |
∫ ((√(x^4 +x^(−4) +2))/x^3 ) dx |
![]() |
![]() |
calculate I_n =∫∫_([(1/n),n[) e^(−x^2 −3y^2 ) dxdy and find lim_(n→+∞) I_n conclude that ∫_0 ^∞ e^(−x^2 ) dx=((√π)/2) |
calculate ∫∫_W (x+y)e^(x−y) dxdy with W is the triangle limited by o,A(1,0)and B(0,1) |
calculate ∫∫_D ln(1+x+y)dxdy with D is the triangle limited by points 0,A(1,0) and B(0,1) |
![]() |
![]() |
![]() |
![]() |
∫(dx/(cos^3 x−sin^3 x)) |
1) find ∫ (dx/((x+2)^5 (x−3)^9 )) 2) calculate ∫_4 ^(+∞) (dx/((x+2)^5 (x−3)^9 )) |
∫ ((x(tan^(−1) (x))^2 )/((1+x^2 )^(3/2) )) dx = |
if g(−2)=−5 and g′(x)= (x^2 /(cos^2 (x)+1)) find g(4) |
∫_0 ^4 ⌊x⌋^2 dx = ∫_0 ^4 ⌊x^2 ⌋dx= |
Evaluate ∫_(−∞) ^∞ (dx/(x^2 +4x+13)). |
calculate ∫_2 ^(+∞) ((2x+3)/((x−1)^3 (x^2 +x+1)^2 ))dx |
find ∫ (dx/((x+1)^3 (x^2 +3)^2 )) |
1) calculate ∫_0 ^∞ cos(x^3 )dx 2)find the value of ∫_0 ^∞ cos(x^n )dx with n≥2 |
Hello Nice day im thinking of this one a close forme? ∫(√(1+x^p ))dx p∈R_+ , x∈[0,1[ |
Quation posted Times ago i can′t find it .after Somme Try i got close Fofme ∫_0 ^π sin(x^2 )dx=(π^3 /3) _1 F_2 ((3/4);(3/2);(7/4),−(π^4 /4))? sin(x)=Σ_(k≥0) (((−1)^k x^(2k+1) )/((2k+1)!)) ⇒sin(x^2 )=Σ_(k≥0) (((−1)^k x^(4k+2) )/((2k+1)!)) ∫_0 ^π sin(x^2 )dx=Σ_(k≥0) (((−1)^k )/((2k+1)!))∫_0 ^π x^(4k+2) dx =Σ_(k≥0) (((−1)^k π^(4k+3) )/((2k+1)!(4k+3))) =(π^3 /3)Σ_(k≥0) ((3(−1)^k π^(4k) )/((2k+1)!(4k+3))) (2k+1)!=k!.Π_(j=1) ^(k+1) (k+j)=k!.2^k .3....(2k+1) =(π^3 /3).Σ_(k≥0) ((3(−1)^k π^(4k) )/(k!.2^k .3....(2k+1)(4k+3))) =(π^3 /3)Σ_(k≥0) ((2^k .3)/(3...(2k+1).(4k+3))).(((−π^4 )/4))^k .(1/(k!)) =(π^3 /3).Σ_(k≥0) ((2^k .3.....(4k−1))/(3.....(2k+1).(7.....(4k−1)(4k+3))).(((−π^4 )/4))^k .(1/(k!)) =(π^3 /3).Σ_(k≥0) (((1/4^k ).(3)...(4k−1))/((1/2^k ).(3)...(2k+1).(1/4^k )(7)...(4k+3))).(−(π^4 /4))^k .(1/(k!)) =(π^3 /3)Σ_(k≥0) ((((3/4))....((3/4)+k−1))/(((3/2))....((3/2)+k−1).((7/4))....((7/4)+k−1))).(((−π^4 )/4))^k .(1/(k!)) =(π^3 /3) _1 F_2 ((3/4);(3/2);(7/4);−(π^4 /4)) |
Pg 188 Pg 189 Pg 190 Pg 191 Pg 192 Pg 193 Pg 194 Pg 195 Pg 196 Pg 197 |