Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 193

Question Number 82244    Answers: 1   Comments: 2

find the function of f when this function continue at interval [−∞,0] ∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)]

findthefunctionoffwhenthisfunctioncontinueatinterval[,0]x20f(t)dt=ddx[x(1sin(πx)]

Question Number 82232    Answers: 1   Comments: 1

Question Number 82223    Answers: 0   Comments: 1

given f(x) = f(x+(π/6)) , ∀x∈ R if ∫_0 ^(π/6) f(x) dx = T then ∫_π ^((7π)/3) f(x+π) dx = ?

givenf(x)=f(x+π6),xRifπ60f(x)dx=Tthen7π3πf(x+π)dx=?

Question Number 82185    Answers: 1   Comments: 2

∫ (dx/(sec x + csc x)) = ?

dxsecx+cscx=?

Question Number 82174    Answers: 1   Comments: 1

∫_0 ^π x ln(sin x) dx = ?

π0xln(sinx)dx=?

Question Number 82139    Answers: 1   Comments: 0

∫ ((√(x^4 +x^(−4) +2))/x^3 ) dx

x4+x4+2x3dx

Question Number 82022    Answers: 0   Comments: 0

Question Number 82020    Answers: 0   Comments: 2

Question Number 81996    Answers: 0   Comments: 0

calculate I_n =∫∫_([(1/n),n[) e^(−x^2 −3y^2 ) dxdy and find lim_(n→+∞) I_n conclude that ∫_0 ^∞ e^(−x^2 ) dx=((√π)/2)

calculateIn=[1n,n[ex23y2dxdyandfindlimn+Inconcludethat0ex2dx=π2

Question Number 81994    Answers: 0   Comments: 0

calculate ∫∫_W (x+y)e^(x−y) dxdy with W is the triangle limited by o,A(1,0)and B(0,1)

calculateW(x+y)exydxdywithWisthetrianglelimitedbyo,A(1,0)andB(0,1)

Question Number 81993    Answers: 0   Comments: 0

calculate ∫∫_D ln(1+x+y)dxdy with D is the triangle limited by points 0,A(1,0) and B(0,1)

calculateDln(1+x+y)dxdywithDisthetrianglelimitedbypoints0,A(1,0)andB(0,1)

Question Number 81921    Answers: 1   Comments: 0

Question Number 81889    Answers: 1   Comments: 0

Question Number 81888    Answers: 1   Comments: 1

Question Number 81801    Answers: 1   Comments: 1

Question Number 81739    Answers: 2   Comments: 1

∫(dx/(cos^3 x−sin^3 x))

dxcos3xsin3x

Question Number 81719    Answers: 0   Comments: 1

1) find ∫ (dx/((x+2)^5 (x−3)^9 )) 2) calculate ∫_4 ^(+∞) (dx/((x+2)^5 (x−3)^9 ))

1)finddx(x+2)5(x3)92)calculate4+dx(x+2)5(x3)9

Question Number 81636    Answers: 0   Comments: 4

∫ ((x(tan^(−1) (x))^2 )/((1+x^2 )^(3/2) )) dx =

x(tan1(x))2(1+x2)32dx=

Question Number 81591    Answers: 0   Comments: 6

if g(−2)=−5 and g′(x)= (x^2 /(cos^2 (x)+1)) find g(4)

ifg(2)=5andg(x)=x2cos2(x)+1findg(4)

Question Number 81549    Answers: 0   Comments: 5

∫_0 ^4 ⌊x⌋^2 dx = ∫_0 ^4 ⌊x^2 ⌋dx=

40x2dx=40x2dx=

Question Number 81482    Answers: 1   Comments: 1

Evaluate ∫_(−∞) ^∞ (dx/(x^2 +4x+13)).

Evaluatedxx2+4x+13.

Question Number 81433    Answers: 1   Comments: 0

calculate ∫_2 ^(+∞) ((2x+3)/((x−1)^3 (x^2 +x+1)^2 ))dx

calculate2+2x+3(x1)3(x2+x+1)2dx

Question Number 81432    Answers: 1   Comments: 1

find ∫ (dx/((x+1)^3 (x^2 +3)^2 ))

finddx(x+1)3(x2+3)2

Question Number 81427    Answers: 1   Comments: 4

1) calculate ∫_0 ^∞ cos(x^3 )dx 2)find the value of ∫_0 ^∞ cos(x^n )dx with n≥2

1)calculate0cos(x3)dx2)findthevalueof0cos(xn)dxwithn2

Question Number 81400    Answers: 1   Comments: 3

Hello Nice day im thinking of this one a close forme? ∫(√(1+x^p ))dx p∈R_+ , x∈[0,1[

HelloNicedayimthinkingofthisoneacloseforme?1+xpdxpR+,x[0,1[

Question Number 81340    Answers: 1   Comments: 4

Quation posted Times ago i can′t find it .after Somme Try i got close Fofme ∫_0 ^π sin(x^2 )dx=(π^3 /3) _1 F_2 ((3/4);(3/2);(7/4),−(π^4 /4))? sin(x)=Σ_(k≥0) (((−1)^k x^(2k+1) )/((2k+1)!)) ⇒sin(x^2 )=Σ_(k≥0) (((−1)^k x^(4k+2) )/((2k+1)!)) ∫_0 ^π sin(x^2 )dx=Σ_(k≥0) (((−1)^k )/((2k+1)!))∫_0 ^π x^(4k+2) dx =Σ_(k≥0) (((−1)^k π^(4k+3) )/((2k+1)!(4k+3))) =(π^3 /3)Σ_(k≥0) ((3(−1)^k π^(4k) )/((2k+1)!(4k+3))) (2k+1)!=k!.Π_(j=1) ^(k+1) (k+j)=k!.2^k .3....(2k+1) =(π^3 /3).Σ_(k≥0) ((3(−1)^k π^(4k) )/(k!.2^k .3....(2k+1)(4k+3))) =(π^3 /3)Σ_(k≥0) ((2^k .3)/(3...(2k+1).(4k+3))).(((−π^4 )/4))^k .(1/(k!)) =(π^3 /3).Σ_(k≥0) ((2^k .3.....(4k−1))/(3.....(2k+1).(7.....(4k−1)(4k+3))).(((−π^4 )/4))^k .(1/(k!)) =(π^3 /3).Σ_(k≥0) (((1/4^k ).(3)...(4k−1))/((1/2^k ).(3)...(2k+1).(1/4^k )(7)...(4k+3))).(−(π^4 /4))^k .(1/(k!)) =(π^3 /3)Σ_(k≥0) ((((3/4))....((3/4)+k−1))/(((3/2))....((3/2)+k−1).((7/4))....((7/4)+k−1))).(((−π^4 )/4))^k .(1/(k!)) =(π^3 /3) _1 F_2 ((3/4);(3/2);(7/4);−(π^4 /4))

QuationpostedTimesagoicantfindit.afterSommeTryigotcloseFofme0πsin(x2)dx=π331F2(34;32;74,π44)?sin(x)=k0(1)kx2k+1(2k+1)!sin(x2)=k0(1)kx4k+2(2k+1)!0πsin(x2)dx=k0(1)k(2k+1)!0πx4k+2dx=k0(1)kπ4k+3(2k+1)!(4k+3)=π33k03(1)kπ4k(2k+1)!(4k+3)(2k+1)!=k!.k+1j=1(k+j)=k!.2k.3....(2k+1)=π33.k03(1)kπ4kk!.2k.3....(2k+1)(4k+3)=π33k02k.33...(2k+1).(4k+3).(π44)k.1k!=π33.k02k.3.....(4k1)3.....(2k+1).(7.....(4k1)(4k+3).(π44)k.1k!=π33.k014k.(3)...(4k1)12k.(3)...(2k+1).14k(7)...(4k+3).(π44)k.1k!=π33k0(34)....(34+k1)(32)....(32+k1).(74)....(74+k1).(π44)k.1k!=π331F2(34;32;74;π44)

  Pg 188      Pg 189      Pg 190      Pg 191      Pg 192      Pg 193      Pg 194      Pg 195      Pg 196      Pg 197   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com