Question and Answers Forum |
IntegrationQuestion and Answers: Page 194 |
∫_(−∞) ^∞ ((cos(x))/(1+x^2 )) dx =(π/e) |
show that ∫_0 ^∞ (x^((π/5)−1) /(1+x^(2π) )) dx =φ |
∫_0 ^(π/2) ((xdx)/(sin x+cos x)) = ? |
(1) Integrate F(x, y) = x^2 over the region bounded by y = x^2 , x = 2 and x = 1 (2) Integrate G(x, y) = x^2 + y^2 over the region bounded by the triangle x = y, y = 1 and y = 0 |
![]() |
![]() |
![]() |
∫x^2 +3x dx=.. |
show that ∫_0 ^∞ x arctanh(e^(−αx) )dx=((7ζ(3))/(8α^2 )) |
![]() |
Ψ(x)=∫_1 ^x (1/(√(1−e^t ))) dt ∀x∈R prove that Ψ(x)=2ln(((1−(√(1−e^x )))/(1−(√(1−e)))))−x+1 |
what is the king rule? |
find ∫_(−∞) ^(+∞) ((cos(2x^2 +1))/(x^4 −x^2 +3))dx |
calculate ∫_0 ^∞ ((cos(πx))/((x^2 +3)^2 ))dx |
![]() |
∫_0 ^(π/2) ((xcos x)/((1+sin x)^2 )) dx ? |
show that ∫_0 ^(π/2) ∫_0 ^∞ (1/((x^π )^(1/y) +1)) dx dy =2c whrre c denote tha catalan^, s constant |
![]() |
let f∈L^1 (R) let u_n = ∫_a ^b f(t)sin(nt)dt , v_n =∫_a ^b ((f(t))/t)sin(nt) 1)Prove that lim_(n→∞) u_n =0 2)Deduce in term of a,b,f(0) the value of lim_(n→∞) v_n |
let α ∈R and a_n =Σ_(k=1) ^n ((sin(kα))/(n+k)) Find lim_(n→∞) a_n |
![]() |
![]() |
how to prove ∫_0 ^1 x^n (1−x)^(m ) dx = ((m! ×n!)/((m+n)!)) via Gamma function |
∫ e^(sin 2x) .cos x dx = |
∫e^(√(sin x)) dx=? |
Convergence of I=∫_0 ^( ∞) (e^t /(e^(−t) +e^(2t) ∣sint∣))dt |
Pg 189 Pg 190 Pg 191 Pg 192 Pg 193 Pg 194 Pg 195 Pg 196 Pg 197 Pg 198 |