Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 197

Question Number 78305    Answers: 0   Comments: 0

∫^∞^ 5646778727711=778888877−{116567×622−[66262−712]66666}

^5646778727711=778888877{116567×622[66262712]66666}

Question Number 78284    Answers: 0   Comments: 1

calculate ∫∫_D xy(√(x^2 +2y^2 ))dxdy D={(x,y)/0≤x≤1 and 0≤y≤(√(1−x^2 ))}

calculateDxyx2+2y2dxdyD={(x,y)/0x1and0y1x2}

Question Number 78283    Answers: 0   Comments: 3

calculate ∫∫_D (x^2 +2y)dxdy with D={(x,y)∈R^2 / x^2 ≥y and y≥x^2 }

calculateD(x2+2y)dxdywithD={(x,y)R2/x2yandyx2}

Question Number 78281    Answers: 0   Comments: 0

calculate ∫∫_W ((x^2 −3y^2 )/e^(x^2 +y^2 ) )dxdy with W =[0,1]×[0,1]

calculateWx23y2ex2+y2dxdywithW=[0,1]×[0,1]

Question Number 78277    Answers: 0   Comments: 0

calculate ∫∫_W (e^(−x^2 −y^2 ) /(2(√(x^2 +y^2 ))+3))dxdy with W ={ (x,y)/ x>0 and y>0}

calculateWex2y22x2+y2+3dxdywithW={(x,y)/x>0andy>0}

Question Number 78276    Answers: 0   Comments: 1

find I_n =∫∫_([1,n]^2 ) (√(x^2 +y^2 ))ln(x^2 +y^2 )dxdy

findIn=[1,n]2x2+y2ln(x2+y2)dxdy

Question Number 78273    Answers: 0   Comments: 1

let f(θ) =∫_0 ^(π/4) (dx/(1+sinθ sinx)) with 0<θ<(π/2) 1) explicite f(θ) 2) calculate ∫_0 ^(π/4) (dx/((1+sinθ sinx)^2 ))

letf(θ)=0π4dx1+sinθsinxwith0<θ<π21)explicitef(θ)2)calculate0π4dx(1+sinθsinx)2

Question Number 78271    Answers: 0   Comments: 1

calculate A_θ =∫_0 ^(π/2) (dx/(2+cosθ sinx)) −π<θ<π

calculateAθ=0π2dx2+cosθsinxπ<θ<π

Question Number 78270    Answers: 1   Comments: 1

find ∫_0 ^1 ((ln(1−x^2 )ln(x))/x^2 )dx prove first the convergence.

find01ln(1x2)ln(x)x2dxprovefirsttheconvergence.

Question Number 78269    Answers: 1   Comments: 1

let f(a) =∫_0 ^∞ ((cos(ax))/(x^2 +a^2 ))dx with a>0 find ∫_1 ^2 f(a)da

letf(a)=0cos(ax)x2+a2dxwitha>0find12f(a)da

Question Number 78267    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) ((x^2 −x)/(x^4 −x^2 +3))dx

find+x2xx4x2+3dx

Question Number 78266    Answers: 1   Comments: 2

calculate f(a)=∫_0 ^1 ln(1−ax^3 )dx with 0<a<1

calculatef(a)=01ln(1ax3)dxwith0<a<1

Question Number 78264    Answers: 0   Comments: 4

let I =∫_0 ^π x cos^4 x dxand J=∫_0 ^π x sin^4 xdx 1) calculate I+J and I−J 2) find the values of I and J

letI=0πxcos4xdxandJ=0πxsin4xdx1)calculateI+JandIJ2)findthevaluesofIandJ

Question Number 78265    Answers: 1   Comments: 0

find ∫ ((sin^3 x)/(tan^5 x))dx

findsin3xtan5xdx

Question Number 78251    Answers: 1   Comments: 0

∫((x+4)/(x−(x)^(1/3) )) dx

x+4xx3dx

Question Number 78198    Answers: 1   Comments: 4

Question Number 78163    Answers: 0   Comments: 2

∫ (√(1 + 3 sin(θ) + sin^2 (θ))) dθ

1+3sin(θ)+sin2(θ)dθ

Question Number 78135    Answers: 0   Comments: 0

explicit f(x)=∫_0 ^∞ ((arctan(xt))/(t^2 +x^2 ))dt with x>0

explicitf(x)=0arctan(xt)t2+x2dtwithx>0

Question Number 78134    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((arctan(3x^2 ))/(x^2 +4))dx

findthevalueof+arctan(3x2)x2+4dx

Question Number 78254    Answers: 0   Comments: 0

∫_0 ^1 ((xln(ln((1/x))))/((x^2 −x+1)^2 ))dx i poste solution later!

01xln(ln(1x))(x2x+1)2dxipostesolutionlater!

Question Number 78013    Answers: 1   Comments: 0

if : 30x^4 −((15)/8)= ∫_t ^x g(u)du find g(t).

if:30x4158=xtg(u)dufindg(t).

Question Number 77995    Answers: 0   Comments: 3

calculate ∫_(−∞) ^(+∞) ((arctan(2x+1))/((x^2 +3)^2 ))dx

calculate+arctan(2x+1)(x2+3)2dx

Question Number 77987    Answers: 0   Comments: 0

Question Number 77962    Answers: 1   Comments: 2

∫(dx/(1+(tan(x))^(√2) )) dx

dx1+(tan(x))2dx

Question Number 77960    Answers: 0   Comments: 3

∫ ((2x^3 −1)/(x^4 +x)) dx?

2x31x4+xdx?

Question Number 77918    Answers: 1   Comments: 1

∫ _0 ^π e^(−2x) sin x dx ?

π0e2xsinxdx?

  Pg 192      Pg 193      Pg 194      Pg 195      Pg 196      Pg 197      Pg 198      Pg 199      Pg 200      Pg 201   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com