Question and Answers Forum |
IntegrationQuestion and Answers: Page 197 |
∫^∞^ 5646778727711=778888877−{116567×622−[66262−712]66666} |
calculate ∫∫_D xy(√(x^2 +2y^2 ))dxdy D={(x,y)/0≤x≤1 and 0≤y≤(√(1−x^2 ))} |
calculate ∫∫_D (x^2 +2y)dxdy with D={(x,y)∈R^2 / x^2 ≥y and y≥x^2 } |
calculate ∫∫_W ((x^2 −3y^2 )/e^(x^2 +y^2 ) )dxdy with W =[0,1]×[0,1] |
calculate ∫∫_W (e^(−x^2 −y^2 ) /(2(√(x^2 +y^2 ))+3))dxdy with W ={ (x,y)/ x>0 and y>0} |
find I_n =∫∫_([1,n]^2 ) (√(x^2 +y^2 ))ln(x^2 +y^2 )dxdy |
let f(θ) =∫_0 ^(π/4) (dx/(1+sinθ sinx)) with 0<θ<(π/2) 1) explicite f(θ) 2) calculate ∫_0 ^(π/4) (dx/((1+sinθ sinx)^2 )) |
calculate A_θ =∫_0 ^(π/2) (dx/(2+cosθ sinx)) −π<θ<π |
find ∫_0 ^1 ((ln(1−x^2 )ln(x))/x^2 )dx prove first the convergence. |
let f(a) =∫_0 ^∞ ((cos(ax))/(x^2 +a^2 ))dx with a>0 find ∫_1 ^2 f(a)da |
find ∫_(−∞) ^(+∞) ((x^2 −x)/(x^4 −x^2 +3))dx |
calculate f(a)=∫_0 ^1 ln(1−ax^3 )dx with 0<a<1 |
let I =∫_0 ^π x cos^4 x dxand J=∫_0 ^π x sin^4 xdx 1) calculate I+J and I−J 2) find the values of I and J |
find ∫ ((sin^3 x)/(tan^5 x))dx |
∫((x+4)/(x−(x)^(1/3) )) dx |
![]() |
∫ (√(1 + 3 sin(θ) + sin^2 (θ))) dθ |
explicit f(x)=∫_0 ^∞ ((arctan(xt))/(t^2 +x^2 ))dt with x>0 |
find the value of ∫_(−∞) ^(+∞) ((arctan(3x^2 ))/(x^2 +4))dx |
∫_0 ^1 ((xln(ln((1/x))))/((x^2 −x+1)^2 ))dx i poste solution later! |
if : 30x^4 −((15)/8)= ∫_t ^x g(u)du find g(t). |
calculate ∫_(−∞) ^(+∞) ((arctan(2x+1))/((x^2 +3)^2 ))dx |
![]() |
∫(dx/(1+(tan(x))^(√2) )) dx |
∫ ((2x^3 −1)/(x^4 +x)) dx? |
∫ _0 ^π e^(−2x) sin x dx ? |
Pg 192 Pg 193 Pg 194 Pg 195 Pg 196 Pg 197 Pg 198 Pg 199 Pg 200 Pg 201 |