Question and Answers Forum |
IntegrationQuestion and Answers: Page 204 |
verify that y(x)=e^x (cos e^x −e^x sin e^x ) is the solution of integral equation y(x)=(1−xe^(2x) )cos 1−e^(2x) sin 1+∫_0 ^x {1−(x−t)e^(2x) }y(t)dt |
∫e^t cos e^t dt |
Can anyone share the solutions (pdf) of the book Advanced engineering Mathematics by Erwin kreyzig 8th edition ? |
Find the volume of the solid that lies within the sphere x^2 +y^2 +z^2 =16, above the x-y plane and below the cone z=(√(x^2 +y^2 )) |
![]() |
Find orthogonal trajectories of the curves: (x−c)^2 +y^2 =c^2 . |
∫_0^ ^(Π/2) xcos^n xdx by reduction formula |
![]() |
∫e^(2t) sin e^t dt |
![]() |
Find out the value of J=∫_0 ^∞ ∫_0 ^1 (2e^(−2xy) −e^(−xy) )dxdy |
Evaluate the integral : ∫_( R) ∫(3x^2 +14xy+8y^2 )dxdy for the region R in the 1st quadrant bounded by the lines y=((−3)/2)x+1,y=((−3)/2)x+3,y=−(1/4)x and y=−(1/4)x+1 . |
∫_(−1) ^( 1) (2+x)sin^(−1) (((√(3−3x^2 ))/(2+x)))dx = ? |
evaluate ∫lnx dx |
calculate ∫_0 ^∞ ((arctan(3+x^2 ))/((2 x^2 +9)^2 ))dx |
decompose inside C(x) the fraction F(x)=(1/((x^2 +1)^n )) calculate ∫_0 ^∞ F(x)dx |
find ∫ (dx/(x+2−(√(x^2 −x +7)))) |
find ∫ (dx/((√(x^2 +1))+(√(x^2 +3)))) |
find ∫ ln(x−cosx)dx |
find ∫_0 ^∞ xe^(−x^2 ) arcran(x+(1/x))dx |
find ∫ ((3x+2)/((x+1)^2 (x−2)^3 ))dx |
find ∫_0 ^1 ((x^3 −3)/(√(x^2 −x +2)))dx |
calculate ∫ ((x^3 −4x+5)/(x^2 −x +1))dx |
Evaluate : 1) ∫_(−2) ^( 2) ∫_(−(√(4−x^2 ))) ^( (√(4−x^2 ))) (3−x)dydx . (after changing the integral to polar form). 2) ∫_0 ^4 ∫_0 ^(4−x) ∫_0 ^( 4−(y^2 /4)) dzdydx . |
Solve : ∫(([cos^(−1) x(√(1−x^2 ))]^(−1) )/(log_e [2+((sin(2x(√(1−x^2 ))))/π)]))dx Evaluate ∫_(−π/2) ^( π/2) sin^2 xcos^2 x(cosx+sinx)dx |
find f(x)=∫_0 ^1 e^(−t) ln(1−xt^2 )dt with ∣x∣<1 2)calculate ∫_0 ^1 e^(−t) ln(1−(t^2 /2))dt |
Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 |