Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 204

Question Number 74218    Answers: 1   Comments: 0

verify that y(x)=e^x (cos e^x −e^x sin e^x ) is the solution of integral equation y(x)=(1−xe^(2x) )cos 1−e^(2x) sin 1+∫_0 ^x {1−(x−t)e^(2x) }y(t)dt

verifythaty(x)=ex(cosexexsinex)isthesolutionofintegralequationy(x)=(1xe2x)cos1e2xsin1+x0{1(xt)e2x}y(t)dt

Question Number 74210    Answers: 1   Comments: 0

∫e^t cos e^t dt

etcosetdt

Question Number 74131    Answers: 0   Comments: 2

Can anyone share the solutions (pdf) of the book Advanced engineering Mathematics by Erwin kreyzig 8th edition ?

Cananyonesharethesolutions(pdf)ofthebookAdvancedengineeringMathematicsbyErwinkreyzig8thedition?

Question Number 74117    Answers: 0   Comments: 1

Find the volume of the solid that lies within the sphere x^2 +y^2 +z^2 =16, above the x-y plane and below the cone z=(√(x^2 +y^2 ))

Findthevolumeofthesolidthatlieswithinthespherex2+y2+z2=16,abovethexyplaneandbelowtheconez=x2+y2

Question Number 74068    Answers: 1   Comments: 4

Question Number 74040    Answers: 1   Comments: 1

Find orthogonal trajectories of the curves: (x−c)^2 +y^2 =c^2 .

Findorthogonaltrajectoriesofthecurves:(xc)2+y2=c2.

Question Number 74037    Answers: 1   Comments: 0

∫_0^ ^(Π/2) xcos^n xdx by reduction formula

0Π/2xcosnxdxbyreductionformula

Question Number 73832    Answers: 2   Comments: 7

Question Number 74338    Answers: 0   Comments: 0

∫e^(2t) sin e^t dt

e2tsinetdt

Question Number 73804    Answers: 0   Comments: 0

Question Number 73751    Answers: 1   Comments: 1

Find out the value of J=∫_0 ^∞ ∫_0 ^1 (2e^(−2xy) −e^(−xy) )dxdy

FindoutthevalueofJ=001(2e2xyexy)dxdy

Question Number 73715    Answers: 1   Comments: 2

Evaluate the integral : ∫_( R) ∫(3x^2 +14xy+8y^2 )dxdy for the region R in the 1st quadrant bounded by the lines y=((−3)/2)x+1,y=((−3)/2)x+3,y=−(1/4)x and y=−(1/4)x+1 .

Evaluatetheintegral:R(3x2+14xy+8y2)dxdyfortheregionRinthe1stquadrantboundedbythelinesy=32x+1,y=32x+3,y=14xandy=14x+1.

Question Number 73689    Answers: 2   Comments: 0

∫_(−1) ^( 1) (2+x)sin^(−1) (((√(3−3x^2 ))/(2+x)))dx = ?

11(2+x)sin1(33x22+x)dx=?

Question Number 73545    Answers: 1   Comments: 2

evaluate ∫lnx dx

evaluatelnxdx

Question Number 73489    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(3+x^2 ))/((2 x^2 +9)^2 ))dx

calculate0arctan(3+x2)(2x2+9)2dx

Question Number 73484    Answers: 1   Comments: 0

decompose inside C(x) the fraction F(x)=(1/((x^2 +1)^n )) calculate ∫_0 ^∞ F(x)dx

decomposeinsideC(x)thefractionF(x)=1(x2+1)ncalculate0F(x)dx

Question Number 73483    Answers: 1   Comments: 0

find ∫ (dx/(x+2−(√(x^2 −x +7))))

finddxx+2x2x+7

Question Number 73482    Answers: 1   Comments: 1

find ∫ (dx/((√(x^2 +1))+(√(x^2 +3))))

finddxx2+1+x2+3

Question Number 73481    Answers: 0   Comments: 0

find ∫ ln(x−cosx)dx

findln(xcosx)dx

Question Number 73480    Answers: 0   Comments: 0

find ∫_0 ^∞ xe^(−x^2 ) arcran(x+(1/x))dx

find0xex2arcran(x+1x)dx

Question Number 73479    Answers: 1   Comments: 1

find ∫ ((3x+2)/((x+1)^2 (x−2)^3 ))dx

find3x+2(x+1)2(x2)3dx

Question Number 73478    Answers: 1   Comments: 0

find ∫_0 ^1 ((x^3 −3)/(√(x^2 −x +2)))dx

find01x33x2x+2dx

Question Number 73477    Answers: 1   Comments: 0

calculate ∫ ((x^3 −4x+5)/(x^2 −x +1))dx

calculatex34x+5x2x+1dx

Question Number 73428    Answers: 1   Comments: 2

Evaluate : 1) ∫_(−2) ^( 2) ∫_(−(√(4−x^2 ))) ^( (√(4−x^2 ))) (3−x)dydx . (after changing the integral to polar form). 2) ∫_0 ^4 ∫_0 ^(4−x) ∫_0 ^( 4−(y^2 /4)) dzdydx .

Evaluate:1)224x24x2(3x)dydx.(afterchangingtheintegraltopolarform).2)0404x04y24dzdydx.

Question Number 73429    Answers: 1   Comments: 3

Solve : ∫(([cos^(−1) x(√(1−x^2 ))]^(−1) )/(log_e [2+((sin(2x(√(1−x^2 ))))/π)]))dx Evaluate ∫_(−π/2) ^( π/2) sin^2 xcos^2 x(cosx+sinx)dx

Solve:[cos1x1x2]1loge[2+sin(2x1x2)π]dxEvaluateπ/2π/2sin2xcos2x(cosx+sinx)dx

Question Number 73397    Answers: 1   Comments: 1

find f(x)=∫_0 ^1 e^(−t) ln(1−xt^2 )dt with ∣x∣<1 2)calculate ∫_0 ^1 e^(−t) ln(1−(t^2 /2))dt

findf(x)=01etln(1xt2)dtwithx∣<12)calculate01etln(1t22)dt

  Pg 199      Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com