Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 206

Question Number 73397    Answers: 1   Comments: 1

find f(x)=∫_0 ^1 e^(−t) ln(1−xt^2 )dt with ∣x∣<1 2)calculate ∫_0 ^1 e^(−t) ln(1−(t^2 /2))dt

findf(x)=01etln(1xt2)dtwithx∣<12)calculate01etln(1t22)dt

Question Number 73338    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(2cosx))/(3+x^2 ))dx

calculate0arctan(2cosx)3+x2dx

Question Number 73337    Answers: 0   Comments: 3

calculate ∫_0 ^∞ ((cos(artan(2x)))/((3+x^2 )^2 ))dx

calculate0cos(artan(2x))(3+x2)2dx

Question Number 73336    Answers: 1   Comments: 1

find ∫_0 ^∞ e^(−t) ln(1+e^t )dt

find0etln(1+et)dt

Question Number 73335    Answers: 1   Comments: 2

eplcit f(x)=∫_0 ^1 ln(x+t+t^2 )dt with x>(1/4) 2)calculate ∫_0 ^1 ln(t^2 +t +(√2))dt

eplcitf(x)=01ln(x+t+t2)dtwithx>142)calculate01ln(t2+t+2)dt

Question Number 73333    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(π +2x^2 ))/((x^2 +4)^2 ))dx

calculate0cos(π+2x2)(x2+4)2dx

Question Number 73331    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((ln(1+e^(−3x^2 ) ))/(3+x^2 ))dx

calculate0ln(1+e3x2)3+x2dx

Question Number 73293    Answers: 2   Comments: 2

Explicit f(x)= ∫_1 ^∞ ((lnt)/((x^2 +t^2 )^2 )) dt

Explicitf(x)=1lnt(x2+t2)2dt

Question Number 73279    Answers: 1   Comments: 0

Question Number 73275    Answers: 0   Comments: 2

∫(4/(x^2 (√(4−xδϰ)))) ?

4x24xδϰ?

Question Number 73238    Answers: 1   Comments: 1

let 0<a<1 calculate ∫_0 ^∞ ((ln(t)t^(a−1) )/(1+t))dt and ∫_0 ^∞ ((ln^2 (t)t^(a−1) )/(1+t))dt

let0<a<1calculate0ln(t)ta11+tdtand0ln2(t)ta11+tdt

Question Number 73231    Answers: 1   Comments: 1

find the sum of Σ_(n=0) ^∞ (n^2 −3n+1)e^(−n)

findthesumofn=0(n23n+1)en

Question Number 73230    Answers: 0   Comments: 0

calculate A_n =∫_0 ^∞ ((1+x^n )/(2+x^(2n) ))dx and J_n =∫_0 ^∞ ((2+x^(3n) )/(5+x^(7n) ))dx with n integr natural not 0

calculateAn=01+xn2+x2ndxandJn=02+x3n5+x7ndxwithnintegrnaturalnot0

Question Number 73225    Answers: 0   Comments: 0

calculate f(x)=∫_0 ^π ln(x^2 −2xcosθ +1)dθ with x real.

calculatef(x)=0πln(x22xcosθ+1)dθwithxreal.

Question Number 73202    Answers: 2   Comments: 3

∫((2x^2 −1+2x(√(x^2 −1)))/(x^2 −x+(x−1)(√(x^2 −1))))dx=? ∫(dx/(x(√(x+1))(√((1−x)^3 ))))=?

2x21+2xx21x2x+(x1)x21dx=?dxxx+1(1x)3=?

Question Number 73258    Answers: 1   Comments: 0

Question Number 73182    Answers: 0   Comments: 3

calculate ∫_0 ^∞ xe^(−x^2 ) arctan(x−(1/x))dx

calculate0xex2arctan(x1x)dx

Question Number 73181    Answers: 1   Comments: 1

calculate ∫_1 ^(3 ) ((x−2)/(√(x^2 +x+1)))dx

calculate13x2x2+x+1dx

Question Number 73180    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((lnx)/((x+1)^3 ))dx

calculate0lnx(x+1)3dx

Question Number 73179    Answers: 1   Comments: 1

caoculate ∫_0 ^∞ ((arctan(x^2 −1))/(2x^2 +1))dx

caoculate0arctan(x21)2x2+1dx

Question Number 73178    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((ln(2+x^2 ))/(x^2 −x+1))dx

calculate0ln(2+x2)x2x+1dx

Question Number 73155    Answers: 0   Comments: 0

reposting a former question... ∫(((x)^(1/5) −1)/((√x)+1))dx= [t=(x)^(1/(10)) → dx=10(x^9 )^(1/(10)) dx] =10∫((t^9 (t−1))/(t^4 −t^3 +t^2 −t+1))dt= =10∫(t^6 −t^4 −t)dt+10∫((t(t^2 −t+1))/(t^4 −t^3 +t^2 −t+1))dt= =((10)/7)t^7 −2t^5 −5t^2 +(5+(√5))∫(t/(t^2 −((1−(√5))/3)t+1))dt+(5−(√5))∫(t/(t^2 −((1+(√5))/2)t+1))dt= and it′s easy to solve these

repostingaformerquestion...x51x+1dx=[t=x10dx=10x910dx]=10t9(t1)t4t3+t2t+1dt==10(t6t4t)dt+10t(t2t+1)t4t3+t2t+1dt==107t72t55t2+(5+5)tt2153t+1dt+(55)tt21+52t+1dt=anditseasytosolvethese

Question Number 73147    Answers: 1   Comments: 1

∫((x−6)/(x^3 +1))dx

x6x3+1dx

Question Number 73144    Answers: 1   Comments: 1

calculte ∫ ((x+(√(2+x^2 )))/(x+1−(√(2+x^2 ))))dx

calcultex+2+x2x+12+x2dx

Question Number 73037    Answers: 1   Comments: 1

Question Number 72988    Answers: 1   Comments: 1

calculate f(x)=∫_0 ^∞ (e^(−xt^2 ) /(4+t^2 ))dt with x>0

calculatef(x)=0ext24+t2dtwithx>0

  Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com