Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 209

Question Number 69784    Answers: 0   Comments: 0

calculate f(a) =∫_0 ^∞ e^(−(x^2 +(a/x^2 ))) dx with a>0

calculatef(a)=0e(x2+ax2)dxwitha>0

Question Number 69692    Answers: 0   Comments: 0

Question Number 69637    Answers: 1   Comments: 0

...now try this one: ∫(dx/(x^(1/2) −x^(1/3) −x^(1/6) ))=

...nowtrythisone:dxx1/2x1/3x1/6=

Question Number 69623    Answers: 1   Comments: 0

∫(1/((√x) + (x)^(1/3) )) dx

1x+x3dx

Question Number 69603    Answers: 1   Comments: 0

∫ x^3 arcsinxdx

x3arcsinxdx

Question Number 69597    Answers: 1   Comments: 1

Question Number 69573    Answers: 0   Comments: 1

Question Number 69570    Answers: 0   Comments: 0

Question Number 69566    Answers: 1   Comments: 0

Question Number 69565    Answers: 0   Comments: 0

Question Number 69564    Answers: 0   Comments: 3

let f(a) =∫_0 ^∞ (dx/(x^4 −2x^2 +a)) with a real and a>1 1) determine a explicit form for f(a) 2) calculate g(a) =∫_0 ^∞ (dx/((x^4 −2x^2 +a)^2 )) 3) find the values of integrals ∫_0 ^∞ (dx/(x^4 −2x^2 +3)) and ∫_0 ^∞ (dx/((x^4 −2x^2 +3)^2 ))

letf(a)=0dxx42x2+awitharealanda>11)determineaexplicitformforf(a)2)calculateg(a)=0dx(x42x2+a)23)findthevaluesofintegrals0dxx42x2+3and0dx(x42x2+3)2

Question Number 69563    Answers: 0   Comments: 1

calculate ∫_0 ^∞ (dx/(x^4 −x^2 +1))

calculate0dxx4x2+1

Question Number 69502    Answers: 3   Comments: 2

∫((3sinx+4cosx)/(4sinx+3cosx))dx

3sinx+4cosx4sinx+3cosxdx

Question Number 69390    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ (((1+x)^α −(1+x)^((β) )/x)dx and determine its value

studytheconvergenceof0(1+x)α(1+x)(βxdxanddetermineitsvalue

Question Number 69389    Answers: 0   Comments: 0

find ∫_(∣z+i∣=3) ((sinz)/(z+i))dz

findz+i∣=3sinzz+idz

Question Number 69379    Answers: 0   Comments: 1

calculste f(a) =∫_(−∞) ^(+∞) (((−1)^x^2 )/(x^2 +a^2 ))dx with a>0

calculstef(a)=+(1)x2x2+a2dxwitha>0

Question Number 69375    Answers: 0   Comments: 0

let f(α) =∫_0 ^∞ ((cos(α(1+x^2 )))/(1+x^2 ))dx 1)determine a explicit form of f(α) 2) calculate ∫_0 ^∞ ((cos(2+2x^2 ))/(x^2 +1))dx

letf(α)=0cos(α(1+x2))1+x2dx1)determineaexplicitformoff(α)2)calculate0cos(2+2x2)x2+1dx

Question Number 74637    Answers: 1   Comments: 1

1)calculate f(x)=∫_0 ^1 t^2 (√(x^2 +t^2 ))dt with x>0 2) calculste g(x)=∫_0 ^1 (t^2 /(√(x^2 +t^2 )))dt

1)calculatef(x)=01t2x2+t2dtwithx>02)calculsteg(x)=01t2x2+t2dt

Question Number 69261    Answers: 1   Comments: 0

find ∫_0 ^1 xtanx dx

find01xtanxdx

Question Number 69257    Answers: 0   Comments: 0

∫_(−2) ^( 4) ∣x∣^(2x^3 ) dx = ?

24x2x3dx=?

Question Number 69246    Answers: 0   Comments: 0

Explicit ∫_0 ^∞ ((Si(ax))/(x+b)) dx with Si(u)=∫_0 ^u ((sinx)/x)dx

Explicit0Si(ax)x+bdxwithSi(u)=0usinxxdx

Question Number 69241    Answers: 0   Comments: 0

Let consider K=∫_0 ^1 (((1−x^a )(1−x^b )(1−x^c ))/((x−1)lnx))dx prove that e^K = (((a+b)!(a+c)!(b+c)!)/(a!b!c!(a+b+c)!))

LetconsiderK=01(1xa)(1xb)(1xc)(x1)lnxdxprovethateK=(a+b)!(a+c)!(b+c)!a!b!c!(a+b+c)!

Question Number 69238    Answers: 1   Comments: 1

Use Residus Theorem to explicit f(a)=Σ_(n=1) ^∞ (((−1)^n sin(na))/n^3 )

UseResidusTheoremtoexplicitf(a)=n=1(1)nsin(na)n3

Question Number 69233    Answers: 1   Comments: 1

Prove that B=∫_0 ^1 [ln(−lnu)]^2 du = γ^2 + ζ(2)

ProvethatB=01[ln(lnu)]2du=γ2+ζ(2)

Question Number 69231    Answers: 0   Comments: 1

Prove that Σ_(p=0) ^∞ (((−1)^p )/(4p+1)) = ((π−argcoth((√2) ))/(4(√2))) and Σ_(p=0) ^(∞ ) (((−1)^p )/(4p+3)) = ((π+argcoth((√2) ))/(4(√2) ))

Provethatp=0(1)p4p+1=πargcoth(2)42andp=0(1)p4p+3=π+argcoth(2)42

Question Number 69167    Answers: 1   Comments: 0

  Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210      Pg 211      Pg 212      Pg 213   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com