Question and Answers Forum |
IntegrationQuestion and Answers: Page 209 |
calculate f(a) =∫_0 ^∞ e^(−(x^2 +(a/x^2 ))) dx with a>0 |
![]() |
...now try this one: ∫(dx/(x^(1/2) −x^(1/3) −x^(1/6) ))= |
∫(1/((√x) + (x)^(1/3) )) dx |
∫ x^3 arcsinxdx |
![]() |
![]() |
![]() |
![]() |
![]() |
let f(a) =∫_0 ^∞ (dx/(x^4 −2x^2 +a)) with a real and a>1 1) determine a explicit form for f(a) 2) calculate g(a) =∫_0 ^∞ (dx/((x^4 −2x^2 +a)^2 )) 3) find the values of integrals ∫_0 ^∞ (dx/(x^4 −2x^2 +3)) and ∫_0 ^∞ (dx/((x^4 −2x^2 +3)^2 )) |
calculate ∫_0 ^∞ (dx/(x^4 −x^2 +1)) |
∫((3sinx+4cosx)/(4sinx+3cosx))dx |
study the convergence of ∫_0 ^∞ (((1+x)^α −(1+x)^((β) )/x)dx and determine its value |
find ∫_(∣z+i∣=3) ((sinz)/(z+i))dz |
calculste f(a) =∫_(−∞) ^(+∞) (((−1)^x^2 )/(x^2 +a^2 ))dx with a>0 |
let f(α) =∫_0 ^∞ ((cos(α(1+x^2 )))/(1+x^2 ))dx 1)determine a explicit form of f(α) 2) calculate ∫_0 ^∞ ((cos(2+2x^2 ))/(x^2 +1))dx |
1)calculate f(x)=∫_0 ^1 t^2 (√(x^2 +t^2 ))dt with x>0 2) calculste g(x)=∫_0 ^1 (t^2 /(√(x^2 +t^2 )))dt |
find ∫_0 ^1 xtanx dx |
∫_(−2) ^( 4) ∣x∣^(2x^3 ) dx = ? |
Explicit ∫_0 ^∞ ((Si(ax))/(x+b)) dx with Si(u)=∫_0 ^u ((sinx)/x)dx |
Let consider K=∫_0 ^1 (((1−x^a )(1−x^b )(1−x^c ))/((x−1)lnx))dx prove that e^K = (((a+b)!(a+c)!(b+c)!)/(a!b!c!(a+b+c)!)) |
Use Residus Theorem to explicit f(a)=Σ_(n=1) ^∞ (((−1)^n sin(na))/n^3 ) |
Prove that B=∫_0 ^1 [ln(−lnu)]^2 du = γ^2 + ζ(2) |
Prove that Σ_(p=0) ^∞ (((−1)^p )/(4p+1)) = ((π−argcoth((√2) ))/(4(√2))) and Σ_(p=0) ^(∞ ) (((−1)^p )/(4p+3)) = ((π+argcoth((√2) ))/(4(√2) )) |
![]() |
Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 Pg 209 Pg 210 Pg 211 Pg 212 Pg 213 |