Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 211

Question Number 68598    Answers: 0   Comments: 2

find ∫ (dx/(x^3 −4x +3))

finddxx34x+3

Question Number 68597    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(e^x^2 ))/(x^2 +8))dx

calculate0arctan(ex2)x2+8dx

Question Number 68596    Answers: 0   Comments: 1

calculate ∫_(π/2) ^(π/3) ((xdx)/(3+cosx))

calculateπ2π3xdx3+cosx

Question Number 68595    Answers: 0   Comments: 1

calculate A_λ =∫_0 ^∞ (e^(−λx^2 ) /(x^4 +1))dx with λ>0 and find ∫_0 ^1 A_λ dλ

calculateAλ=0eλx2x4+1dxwithλ>0andfind01Aλdλ

Question Number 68594    Answers: 0   Comments: 0

calculate ∫_0 ^(2π) (dx/(cosx +sin(2x)))

calculate02πdxcosx+sin(2x)

Question Number 68532    Answers: 0   Comments: 0

Question Number 68481    Answers: 0   Comments: 6

I=∫_0 ^( 1) (√((c−x^2 )/(x(1−x^2 ))))dx (c >1)

I=01cx2x(1x2)dx(c>1)

Question Number 68470    Answers: 0   Comments: 3

find the value of ∫_0 ^∞ ((arctan(2x^2 ))/(x^2 +4))dx

findthevalueof0arctan(2x2)x2+4dx

Question Number 68434    Answers: 1   Comments: 0

Question Number 68409    Answers: 1   Comments: 3

calculate ∫_0 ^(+∞) ((arctan(x^2 ))/(1+x^2 ))dx

calculate0+arctan(x2)1+x2dx

Question Number 68370    Answers: 1   Comments: 0

Question Number 68316    Answers: 0   Comments: 1

∫(4sin 3x+(e^(4x) /4))

(4sin3x+e4x4)

Question Number 68313    Answers: 0   Comments: 1

∫(1−(6/x)+(2/x^2 )+(√x))

(16x+2x2+x)

Question Number 68271    Answers: 0   Comments: 0

Find J=∫_0 ^1 ((W(−ulnu))/(ulnu)) du when W is the lambert function

FindJ=01W(ulnu)ulnuduwhenWisthelambertfunction

Question Number 68241    Answers: 0   Comments: 1

calculate ∫∫_w (x^2 −2y^2 )(√(x^2 +3y^2 ))dxdy with w ={(x,y)∈R^2 / 0≤x≤1 and 1≤y≤2}

calculatew(x22y2)x2+3y2dxdywithw={(x,y)R2/0x1and1y2}

Question Number 68220    Answers: 0   Comments: 0

Let consider (a_n )_n and (u_n )_n two reals sequence defined such as a_0 =1 , ∀ n>1 a_(n+1) =Σ_(p=0) ^n a_p a_(n−p) and Σ_(p=0) ^n a_p u_(n−p) =0 Part1 1)Express ∀ n >1 a_n in terms of n 2) Find the largest domain of convergence of the integer serie {a_n x^n } 3)Determinate ∀ x∈D the sum f(x) of {a_n x^n } 4)Find the radius of convergence of the serie {u_n x^n } 5) Give the relation that between the sum S(x) of the second serie and (x/(f(x))) 6) Can you developp in integer serie g(x)=((πx)/(tan(πx))) Part2 Now do the part 1 but in the order 2)−1)−3)−4)−5)−6)

Letconsider(an)nand(un)ntworealssequencedefinedsuchasa0=1,n>1an+1=np=0apanpandnp=0apunp=0Part11)Expressn>1anintermsofn2)Findthelargestdomainofconvergenceoftheintegerserie{anxn}3)DeterminatexDthesumf(x)of{anxn}4)Findtheradiusofconvergenceoftheserie{unxn}5)GivetherelationthatbetweenthesumS(x)ofthesecondserieandxf(x)6)Canyoudeveloppinintegerserieg(x)=πxtan(πx)Part2Nowdothepart1butintheorder2)1)3)4)5)6)

Question Number 68219    Answers: 1   Comments: 0

Let consider (a_n )_n and (u_n )_n two reals sequence defined such as a_0 =1 , ∀ n>1 a_(n+1) =Σ_(p=0) ^n a_p a_(n−p) and Σ_(p=0) ^n a_p u_(n−p) =0 Part1 1)Express ∀ n >1 a_n in terms of n 2) Find the largest domain of convergence of the integer serie {a_n x^n } 3)Determinate ∀ x∈D the sum f(x) of {a_n x^n } 4)Find the radius of convergence of the serie {u_n x^n } 5) Give the relation that between the sum S(x) of the second serie and (x/(f(x))) 6) Can you developp in integer serie g(x)=((πx)/(tan(πx))) Part2 Now do the part 1 but in the order 2)−1)−3)−4)−5)−6)

Letconsider(an)nand(un)ntworealssequencedefinedsuchasa0=1,n>1an+1=np=0apanpandnp=0apunp=0Part11)Expressn>1anintermsofn2)Findthelargestdomainofconvergenceoftheintegerserie{anxn}3)DeterminatexDthesumf(x)of{anxn}4)Findtheradiusofconvergenceoftheserie{unxn}5)GivetherelationthatbetweenthesumS(x)ofthesecondserieandxf(x)6)Canyoudeveloppinintegerserieg(x)=πxtan(πx)Part2Nowdothepart1butintheorder2)1)3)4)5)6)

Question Number 68149    Answers: 0   Comments: 2

Explicit f(a)=Σ_(n=1) ^∞ (((−1)^n )/(n(an+1)))

Explicitf(a)=n=1(1)nn(an+1)

Question Number 68145    Answers: 0   Comments: 5

Find the arc length, given the curve x(t) = sin (πt), y(t) = t , 0 ≤ t ≤ 1

Findthearclength,giventhecurvex(t)=sin(πt),y(t)=t,0t1

Question Number 68141    Answers: 0   Comments: 1

the 2 formulas for solving ∫(dx/(x^3 +px+q)) with “nasty” solutions of x^3 +px+q=0 with p, q ∈R case 1 D=(p^3 /(27))+(q^2 /4)>0 ⇒ x^3 +px+q=0 has got 1 real and 2 conjugated complex solutions u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) ∧v=((−(q/2)−p(√((p^3 /(27))+(q^2 /4)))))^(1/3) x_1 =u+v x_2 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v x_3 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v α=u+v∧β=((√3)/2)(u−v) ⇔ u=(α/2)+(β/(√3))∧v=(α/2)−(β/(√3)) x_1 =α x_2 =−(α/2)+βi x_3 =−(α/2)−βi ∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x^2 +αx+((α^2 +4β^2 )/4))))= =(1/(9α^2 +4β^2 ))(∫(dx/((x−α)))−∫((x+2α)/(x^2 +αx+((α^2 +4β^2 )/4)))dx)= =(1/(9α^2 +4β^2 ))(ln ∣x−α∣ −(1/2)ln ((2x+α)^2 +4β^2 ) −((3α)/(2β))arctan ((2x+α)/(2β))) +C ...now calculate the constants case 2 D=(p^3 /(27))+(q^2 /4)<0 ⇒ x^3 +px+q=0 has got 3 real solutions x_k =(2/3)(√(−3p)) sin (((2π)/3)k+(1/3)arcsin ((3(√3)q)/(2(√(−p^3 ))))) with k=0, 1, 2 let x_1 =α, x_2 =β, x_3 =γ ∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x−β)(x−γ)))= =(1/((α−β)(α−γ)))∫(dx/(x−α))+(1/((β−α)(β−γ)))∫(dx/(x−β))+(1/((γ−α)(γ−β)))∫(dx/(x−γ))= =((ln ∣x−α∣)/((α−β)(α−γ)))+((ln ∣x−β∣)/((β−α)(β−γ)))+((ln ∣x−γ∣)/((γ−α)(γ−β)))+C ...now calculate the constants

the2formulasforsolvingdxx3+px+qwithnastysolutionsofx3+px+q=0withp,qRcase1D=p327+q24>0x3+px+q=0hasgot1realand2conjugatedcomplexsolutionsu=q2+p327+q243v=q2pp327+q243x1=u+vx2=(12+32i)u+(1232i)vx3=(1232i)u+(12+32i)vα=u+vβ=32(uv)u=α2+β3v=α2β3x1=αx2=α2+βix3=α2βidxx3+px+q=dx(xα)(x2+αx+α2+4β24)==19α2+4β2(dx(xα)x+2αx2+αx+α2+4β24dx)==19α2+4β2(lnxα12ln((2x+α)2+4β2)3α2βarctan2x+α2β)+C...nowcalculatetheconstantscase2D=p327+q24<0x3+px+q=0hasgot3realsolutionsxk=233psin(2π3k+13arcsin33q2p3)withk=0,1,2letx1=α,x2=β,x3=γdxx3+px+q=dx(xα)(xβ)(xγ)==1(αβ)(αγ)dxxα+1(βα)(βγ)dxxβ+1(γα)(γβ)dxxγ==lnxα(αβ)(αγ)+lnxβ(βα)(βγ)+lnxγ(γα)(γβ)+C...nowcalculatetheconstants

Question Number 68116    Answers: 1   Comments: 1

∫(dx/(sin2x−sec(x)))

dxsin2xsec(x)

Question Number 68100    Answers: 0   Comments: 4

Find K=∫_0 ^1 ((ln(1−t+t^2 ))/t) dt

FindK=01ln(1t+t2)tdt

Question Number 68095    Answers: 1   Comments: 0

∫(√x)/1+((x ))^(1/3) dx

x/1+x3dx

Question Number 68094    Answers: 1   Comments: 0

∫dx/(((π+e)^x^2 ))^(1/x)

dx/(π+e)x2x

Question Number 68046    Answers: 1   Comments: 0

Question Number 68040    Answers: 1   Comments: 2

find f(a) =∫_1 ^2 arctan(x+(a/x))dx and calculate f^′ (a) at form of integral

findf(a)=12arctan(x+ax)dxandcalculatef(a)atformofintegral

  Pg 206      Pg 207      Pg 208      Pg 209      Pg 210      Pg 211      Pg 212      Pg 213      Pg 214      Pg 215   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com