Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 212

Question Number 68219    Answers: 1   Comments: 0

Let consider (a_n )_n and (u_n )_n two reals sequence defined such as a_0 =1 , ∀ n>1 a_(n+1) =Σ_(p=0) ^n a_p a_(n−p) and Σ_(p=0) ^n a_p u_(n−p) =0 Part1 1)Express ∀ n >1 a_n in terms of n 2) Find the largest domain of convergence of the integer serie {a_n x^n } 3)Determinate ∀ x∈D the sum f(x) of {a_n x^n } 4)Find the radius of convergence of the serie {u_n x^n } 5) Give the relation that between the sum S(x) of the second serie and (x/(f(x))) 6) Can you developp in integer serie g(x)=((πx)/(tan(πx))) Part2 Now do the part 1 but in the order 2)−1)−3)−4)−5)−6)

Letconsider(an)nand(un)ntworealssequencedefinedsuchasa0=1,n>1an+1=np=0apanpandnp=0apunp=0Part11)Expressn>1anintermsofn2)Findthelargestdomainofconvergenceoftheintegerserie{anxn}3)DeterminatexDthesumf(x)of{anxn}4)Findtheradiusofconvergenceoftheserie{unxn}5)GivetherelationthatbetweenthesumS(x)ofthesecondserieandxf(x)6)Canyoudeveloppinintegerserieg(x)=πxtan(πx)Part2Nowdothepart1butintheorder2)1)3)4)5)6)

Question Number 68149    Answers: 0   Comments: 2

Explicit f(a)=Σ_(n=1) ^∞ (((−1)^n )/(n(an+1)))

Explicitf(a)=n=1(1)nn(an+1)

Question Number 68145    Answers: 0   Comments: 5

Find the arc length, given the curve x(t) = sin (πt), y(t) = t , 0 ≤ t ≤ 1

Findthearclength,giventhecurvex(t)=sin(πt),y(t)=t,0t1

Question Number 68141    Answers: 0   Comments: 1

the 2 formulas for solving ∫(dx/(x^3 +px+q)) with “nasty” solutions of x^3 +px+q=0 with p, q ∈R case 1 D=(p^3 /(27))+(q^2 /4)>0 ⇒ x^3 +px+q=0 has got 1 real and 2 conjugated complex solutions u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) ∧v=((−(q/2)−p(√((p^3 /(27))+(q^2 /4)))))^(1/3) x_1 =u+v x_2 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v x_3 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v α=u+v∧β=((√3)/2)(u−v) ⇔ u=(α/2)+(β/(√3))∧v=(α/2)−(β/(√3)) x_1 =α x_2 =−(α/2)+βi x_3 =−(α/2)−βi ∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x^2 +αx+((α^2 +4β^2 )/4))))= =(1/(9α^2 +4β^2 ))(∫(dx/((x−α)))−∫((x+2α)/(x^2 +αx+((α^2 +4β^2 )/4)))dx)= =(1/(9α^2 +4β^2 ))(ln ∣x−α∣ −(1/2)ln ((2x+α)^2 +4β^2 ) −((3α)/(2β))arctan ((2x+α)/(2β))) +C ...now calculate the constants case 2 D=(p^3 /(27))+(q^2 /4)<0 ⇒ x^3 +px+q=0 has got 3 real solutions x_k =(2/3)(√(−3p)) sin (((2π)/3)k+(1/3)arcsin ((3(√3)q)/(2(√(−p^3 ))))) with k=0, 1, 2 let x_1 =α, x_2 =β, x_3 =γ ∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x−β)(x−γ)))= =(1/((α−β)(α−γ)))∫(dx/(x−α))+(1/((β−α)(β−γ)))∫(dx/(x−β))+(1/((γ−α)(γ−β)))∫(dx/(x−γ))= =((ln ∣x−α∣)/((α−β)(α−γ)))+((ln ∣x−β∣)/((β−α)(β−γ)))+((ln ∣x−γ∣)/((γ−α)(γ−β)))+C ...now calculate the constants

the2formulasforsolvingdxx3+px+qwithnastysolutionsofx3+px+q=0withp,qRcase1D=p327+q24>0x3+px+q=0hasgot1realand2conjugatedcomplexsolutionsu=q2+p327+q243v=q2pp327+q243x1=u+vx2=(12+32i)u+(1232i)vx3=(1232i)u+(12+32i)vα=u+vβ=32(uv)u=α2+β3v=α2β3x1=αx2=α2+βix3=α2βidxx3+px+q=dx(xα)(x2+αx+α2+4β24)==19α2+4β2(dx(xα)x+2αx2+αx+α2+4β24dx)==19α2+4β2(lnxα12ln((2x+α)2+4β2)3α2βarctan2x+α2β)+C...nowcalculatetheconstantscase2D=p327+q24<0x3+px+q=0hasgot3realsolutionsxk=233psin(2π3k+13arcsin33q2p3)withk=0,1,2letx1=α,x2=β,x3=γdxx3+px+q=dx(xα)(xβ)(xγ)==1(αβ)(αγ)dxxα+1(βα)(βγ)dxxβ+1(γα)(γβ)dxxγ==lnxα(αβ)(αγ)+lnxβ(βα)(βγ)+lnxγ(γα)(γβ)+C...nowcalculatetheconstants

Question Number 68116    Answers: 1   Comments: 1

∫(dx/(sin2x−sec(x)))

dxsin2xsec(x)

Question Number 68100    Answers: 0   Comments: 4

Find K=∫_0 ^1 ((ln(1−t+t^2 ))/t) dt

FindK=01ln(1t+t2)tdt

Question Number 68095    Answers: 1   Comments: 0

∫(√x)/1+((x ))^(1/3) dx

x/1+x3dx

Question Number 68094    Answers: 1   Comments: 0

∫dx/(((π+e)^x^2 ))^(1/x)

dx/(π+e)x2x

Question Number 68046    Answers: 1   Comments: 0

Question Number 68040    Answers: 1   Comments: 2

find f(a) =∫_1 ^2 arctan(x+(a/x))dx and calculate f^′ (a) at form of integral

findf(a)=12arctan(x+ax)dxandcalculatef(a)atformofintegral

Question Number 68039    Answers: 0   Comments: 1

find ∫ arctan(x+(1/x))dx

findarctan(x+1x)dx

Question Number 68038    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(x^2 −1))/(x^2 +4))dx

calculate0arctan(x21)x2+4dx

Question Number 68037    Answers: 1   Comments: 0

find ∫ ((x^2 dx)/((x^3 −8)(x^4 +1)))

findx2dx(x38)(x4+1)

Question Number 68033    Answers: 1   Comments: 0

find ∫ (dx/(1+sinx +sin(2x)))

finddx1+sinx+sin(2x)

Question Number 67963    Answers: 1   Comments: 1

Question Number 67959    Answers: 0   Comments: 1

∫(√(e^y^2 )) dy pleas sir can you help me?

ey2dypleassircanyouhelpme?

Question Number 67942    Answers: 0   Comments: 1

∫e^(y^2 /2) dy

ey2/2dy

Question Number 67937    Answers: 0   Comments: 1

Question Number 67932    Answers: 1   Comments: 4

let A(θ) = ∫_0 ^∞ (dx/((x^2 +3)(x^4 −e^(iθ) ))) with 0<θ<(π/2) 1) calculate A(θ) interms of θ 2) determine also ∫_0 ^∞ (dx/((x^2 +3)(x^4 −e^(iθ) )^2 ))

letA(θ)=0dx(x2+3)(x4eiθ)with0<θ<π21)calculateA(θ)intermsofθ2)determinealso0dx(x2+3)(x4eiθ)2

Question Number 67931    Answers: 0   Comments: 0

let A_n =∫_0 ^(π/4) x^n {1+cosx +cos(2x)}^2 dx find a relation of recurrence betwedn the A_n

letAn=0π4xn{1+cosx+cos(2x)}2dxfindarelationofrecurrencebetwedntheAn

Question Number 67919    Answers: 0   Comments: 0

Question Number 67921    Answers: 0   Comments: 0

∫e^(y^2 /2) dy

ey2/2dy

Question Number 67907    Answers: 1   Comments: 1

Question Number 67851    Answers: 0   Comments: 5

find ∫ (dx/(x^2 −z)) with z from C .

finddxx2zwithzfromC.

Question Number 67850    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) (dx/(x^2 −z)) with z from C

calculate+dxx2zwithzfromC

Question Number 67835    Answers: 1   Comments: 0

∫_0 ^2 x(8−x^3 )^(1/3) dx

02x(8x3)13dx

  Pg 207      Pg 208      Pg 209      Pg 210      Pg 211      Pg 212      Pg 213      Pg 214      Pg 215      Pg 216   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com