Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 213

Question Number 67527    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((1+x^2 )/(1+x^4 ))dx

calculate+1+x21+x4dx

Question Number 67526    Answers: 0   Comments: 1

find the value of ∫_0 ^(2π) (dx/(3+2sinx +cosx))

findthevalueof02πdx3+2sinx+cosx

Question Number 67525    Answers: 0   Comments: 3

let a>b>0 calculate ∫_0 ^(2π) (dx/((a+bsinx)^2 ))

leta>b>0calculate02πdx(a+bsinx)2

Question Number 67517    Answers: 0   Comments: 0

let z ∈C and ∣z∣<1 prove that (z/(1−z^2 )) +(z^2 /(1−z^4 )) +.....+(z^2^n /(1−z^2^(n+1) ))+...=(z/(1−z)) (z/(1+z)) +((2z^2 )/(1+z^2 )) +....+((2^n z^2^n )/(1+z^2^n )) +....=(z/(1−z))

letzCandz∣<1provethatz1z2+z21z4+.....+z2n1z2n+1+...=z1zz1+z+2z21+z2+....+2nz2n1+z2n+....=z1z

Question Number 67513    Answers: 0   Comments: 0

∫x^(n ) lnx/n^x dx

xnlnx/nxdx

Question Number 67467    Answers: 0   Comments: 0

Find f(x)=∫_0 ^∞ (( tlnt)/((1+t^2 )^x )) dt

Findf(x)=0tlnt(1+t2)xdt

Question Number 67466    Answers: 0   Comments: 0

let consider for all n≥1 the real (t)_n =t(t+1).....(t+n−1) Find L_n = ∫_0 ^∞ (((t)_1 )/((t)_(n+1) )) dt

letconsiderforalln1thereal(t)n=t(t+1).....(t+n1)FindLn=0(t)1(t)n+1dt

Question Number 67463    Answers: 1   Comments: 3

Find Find K=∫_0 ^(π/2) (√(tanθ)) dθ

FindFindK=0π2tanθdθ

Question Number 67462    Answers: 0   Comments: 2

Calculate when a,b are positive reals f(a,b)= ∫_0 ^1 ((t^a −t^b )/(lnt)) dt

Calculatewhena,barepositiverealsf(a,b)=01tatblntdt

Question Number 68043    Answers: 1   Comments: 1

∫_(π/2) ^π e^(cosx) (√(1−e^(cosx) )) sinx dx

π/2πecosx1ecosxsinxdx

Question Number 67392    Answers: 0   Comments: 0

∫(6x

(6x

Question Number 67385    Answers: 0   Comments: 0

find ∫ x((√((1−x^2 )/(1+x^2 ))))dx

findx(1x21+x2)dx

Question Number 67374    Answers: 0   Comments: 3

find ∫ (1+(1/x^2 ))arctan(1−(1/x))dx

find(1+1x2)arctan(11x)dx

Question Number 67373    Answers: 1   Comments: 4

simplify S_n (x) =Σ_(k=0) ^n C_n ^k cos^4 (πkx) 2) calculate I_n =∫_0 ^(1/3) S_n (x)dx

simplifySn(x)=k=0nCnkcos4(πkx)2)calculateIn=013Sn(x)dx

Question Number 67359    Answers: 1   Comments: 1

∫siny/y dy

siny/ydy

Question Number 67342    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^∞ ((sin(2x^2 ))/((x^2 −x +3)^3 ))dx

findthevalueofsin(2x2)(x2x+3)3dx

Question Number 67310    Answers: 1   Comments: 2

calculate ∫_(−∞) ^(+∞) (dx/(x^4 +x^2 +1))

calculate+dxx4+x2+1

Question Number 67246    Answers: 2   Comments: 4

Integrate: 1) ∫_3 ^( ∞) ((1/x dx)/(ln(x)(√(ln^2 x−1)))) 2) ∫_1 ^∞ ((e^x dx)/(1+e^(2x) )) 3) ∫_1 ^∞ ((2^x dx)/(x+1)) 4) ∫_2 ^∞ ((√x)/(ln(x)))dx

Integrate:1)31/xdxln(x)ln2x12)1exdx1+e2x3)12xdxx+14)2xln(x)dx

Question Number 67235    Answers: 0   Comments: 1

find ∫_(−(π/3)) ^(π/3) x^2 {cosx−sinx}^3 dx

findπ3π3x2{cosxsinx}3dx

Question Number 67233    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((xdx)/(√(1+x^4 )))

calculate01xdx1+x4

Question Number 67231    Answers: 2   Comments: 0

find ∫x/x^5 −1) dx

findx/x51)dx

Question Number 67197    Answers: 1   Comments: 0

∫_0 ^2 x^5 (1−(x/2))^4 dx

02x5(1x2)4dx

Question Number 67153    Answers: 2   Comments: 0

find ∫(v^3 −2)/(v^4 +v )dv

find(v32)/(v4+v)dv

Question Number 67138    Answers: 0   Comments: 1

find the area abounded y=(√x) and y=x−2?

findtheareaaboundedy=xandy=x2?

Question Number 67106    Answers: 0   Comments: 1

find the area abounded y=(√x) afind y=x−2?

findtheareaaboundedy=xafindy=x2?

Question Number 67105    Answers: 0   Comments: 0

find the area abounded y=(√x) afind y=x−2?

findtheareaaboundedy=xafindy=x2?

  Pg 208      Pg 209      Pg 210      Pg 211      Pg 212      Pg 213      Pg 214      Pg 215      Pg 216      Pg 217   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com