Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 214

Question Number 67070    Answers: 0   Comments: 3

Question Number 67069    Answers: 0   Comments: 1

Question Number 67059    Answers: 0   Comments: 1

find the area abounded y=(√(x−2)) and y=x−2 ?

findtheareaaboundedy=x2andy=x2?

Question Number 67058    Answers: 0   Comments: 0

find the area abounded y=(√(x−2)) and y=x−2 ?

findtheareaaboundedy=x2andy=x2?

Question Number 67038    Answers: 1   Comments: 1

calculate ∫_(−1) ^1 (x^(2n) /(1+2^(sinx) ))dx with n integr.

calculate11x2n1+2sinxdxwithnintegr.

Question Number 67035    Answers: 1   Comments: 2

Question Number 67022    Answers: 0   Comments: 0

find ∫ (1+(√x))(√(x^2 +3))dx

find(1+x)x2+3dx

Question Number 67021    Answers: 0   Comments: 1

find f(x) =∫_0 ^1 ln(x +e^(−t) )dt with x>0

findf(x)=01ln(x+et)dtwithx>0

Question Number 67020    Answers: 0   Comments: 1

find f(x) = ∫_0 ^1 arctan(1+xt)dt with x real

findf(x)=01arctan(1+xt)dtwithxreal

Question Number 67019    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−x^2 ) arctan(x^2 )dx

calculate0ex2arctan(x2)dx

Question Number 67018    Answers: 0   Comments: 1

find ∫_0 ^∞ e^(−x) ln(1+x)dx

find0exln(1+x)dx

Question Number 67017    Answers: 0   Comments: 1

find ∫ arctan(1+(√(x+1)))dx

findarctan(1+x+1)dx

Question Number 67016    Answers: 0   Comments: 0

find ∫ arctan(1+(√x)+(√(x+1)))dx

findarctan(1+x+x+1)dx

Question Number 67012    Answers: 0   Comments: 1

find ∫_1 ^(+∞) ((arctan([x]))/x^3 )dx

find1+arctan([x])x3dx

Question Number 67011    Answers: 0   Comments: 1

calculate U_n =∫_1 ^(+∞) ((arctan(n[x]))/x^2 )dx

calculateUn=1+arctan(n[x])x2dx

Question Number 67008    Answers: 0   Comments: 2

let f(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^2 )) with x>0 1) find a explicit form of (x) 2)find also g(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^3 )) 3)find the values of integrals ∫_0 ^∞ (dt/((t^2 +3)^2 )) and ∫_0 ^∞ (dt/((t^2 +3)^3 )) 4) calculate U_θ =∫_0 ^∞ (dt/((t^2 +cos^2 θ)^2 )) with 0<θ<(π/2) 5) find f^((n)) (x) and f^((n)) (0) 6) developp f at integr serie

letf(x)=0dt(x2+t2)2withx>01)findaexplicitformof(x)2)findalsog(x)=0dt(x2+t2)33)findthevaluesofintegrals0dt(t2+3)2and0dt(t2+3)34)calculateUθ=0dt(t2+cos2θ)2with0<θ<π25)findf(n)(x)andf(n)(0)6)developpfatintegrserie

Question Number 67006    Answers: 0   Comments: 1

calculae A_n =∫_0 ^∞ (dx/((x^2 +1)^n )) with n integr natural and n>0

calculaeAn=0dx(x2+1)nwithnintegrnaturalandn>0

Question Number 67005    Answers: 0   Comments: 1

find ∫ ((x−2(√(x^2 −1)))/(x+2(√(x^2 −1))))dx

findx2x21x+2x21dx

Question Number 66959    Answers: 0   Comments: 0

Question Number 66938    Answers: 2   Comments: 7

Question Number 66814    Answers: 0   Comments: 0

Let consider an integer serie {a_n x^n } given by a_n = H_n =Σ_(k=1) ^n (1/k) 1) Find out the largest domain D of convergence of that integer serie 2) ∀ x∈D , explicit the sum S(x) of the {a_n x^n } 3) Calculate ∫_(−1) ^1 S(1−x)S(x) dx .

Letconsideranintegerserie{anxn}givenbyan=Hn=nk=11k1)FindoutthelargestdomainDofconvergenceofthatintegerserie2)xD,explicitthesumS(x)ofthe{anxn}3)Calculate11S(1x)S(x)dx.

Question Number 66801    Answers: 0   Comments: 3

let f(x) =∫_0 ^2 (√(x+t^2 ))dt with x≥0 1) calculate f(x) 2)calculate g(x) =∫_0 ^2 (dt/(√(x+t^2 ))) 3)find the value[of ∫_0 ^2 (√(4+t^2 ))dt and ∫_0 ^2 (dt/(√(3+t^2 ))) 4) give g^′ (x) at form of integral.

letf(x)=02x+t2dtwithx01)calculatef(x)2)calculateg(x)=02dtx+t23)findthevalue[of024+t2dtand02dt3+t24)giveg(x)atformofintegral.

Question Number 66795    Answers: 0   Comments: 3

let f(x) =e^(−x) ln(1+x^2 ) 1) calculate f^((n)) (0) 2) developp f at integr serie

letf(x)=exln(1+x2)1)calculatef(n)(0)2)developpfatintegrserie

Question Number 66794    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(2arctan(2x)))/(9+x^2 ))dx

calculate0cos(2arctan(2x))9+x2dx

Question Number 66793    Answers: 0   Comments: 0

calculate ∫_0 ^1 cos(3arctanx)dx

calculate01cos(3arctanx)dx

Question Number 66792    Answers: 0   Comments: 1

calculate ∫_0 ^1 cos(2 arctan(x))dx

calculate01cos(2arctan(x))dx

  Pg 209      Pg 210      Pg 211      Pg 212      Pg 213      Pg 214      Pg 215      Pg 216      Pg 217      Pg 218   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com