Question and Answers Forum |
IntegrationQuestion and Answers: Page 214 |
![]() |
![]() |
find the area abounded y=(√(x−2)) and y=x−2 ? |
find the area abounded y=(√(x−2)) and y=x−2 ? |
calculate ∫_(−1) ^1 (x^(2n) /(1+2^(sinx) ))dx with n integr. |
![]() |
find ∫ (1+(√x))(√(x^2 +3))dx |
find f(x) =∫_0 ^1 ln(x +e^(−t) )dt with x>0 |
find f(x) = ∫_0 ^1 arctan(1+xt)dt with x real |
calculate ∫_0 ^∞ e^(−x^2 ) arctan(x^2 )dx |
find ∫_0 ^∞ e^(−x) ln(1+x)dx |
find ∫ arctan(1+(√(x+1)))dx |
find ∫ arctan(1+(√x)+(√(x+1)))dx |
find ∫_1 ^(+∞) ((arctan([x]))/x^3 )dx |
calculate U_n =∫_1 ^(+∞) ((arctan(n[x]))/x^2 )dx |
let f(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^2 )) with x>0 1) find a explicit form of (x) 2)find also g(x) =∫_0 ^∞ (dt/((x^2 +t^2 )^3 )) 3)find the values of integrals ∫_0 ^∞ (dt/((t^2 +3)^2 )) and ∫_0 ^∞ (dt/((t^2 +3)^3 )) 4) calculate U_θ =∫_0 ^∞ (dt/((t^2 +cos^2 θ)^2 )) with 0<θ<(π/2) 5) find f^((n)) (x) and f^((n)) (0) 6) developp f at integr serie |
calculae A_n =∫_0 ^∞ (dx/((x^2 +1)^n )) with n integr natural and n>0 |
find ∫ ((x−2(√(x^2 −1)))/(x+2(√(x^2 −1))))dx |
![]() |
![]() |
Let consider an integer serie {a_n x^n } given by a_n = H_n =Σ_(k=1) ^n (1/k) 1) Find out the largest domain D of convergence of that integer serie 2) ∀ x∈D , explicit the sum S(x) of the {a_n x^n } 3) Calculate ∫_(−1) ^1 S(1−x)S(x) dx . |
let f(x) =∫_0 ^2 (√(x+t^2 ))dt with x≥0 1) calculate f(x) 2)calculate g(x) =∫_0 ^2 (dt/(√(x+t^2 ))) 3)find the value[of ∫_0 ^2 (√(4+t^2 ))dt and ∫_0 ^2 (dt/(√(3+t^2 ))) 4) give g^′ (x) at form of integral. |
let f(x) =e^(−x) ln(1+x^2 ) 1) calculate f^((n)) (0) 2) developp f at integr serie |
calculate ∫_0 ^∞ ((cos(2arctan(2x)))/(9+x^2 ))dx |
calculate ∫_0 ^1 cos(3arctanx)dx |
calculate ∫_0 ^1 cos(2 arctan(x))dx |
Pg 209 Pg 210 Pg 211 Pg 212 Pg 213 Pg 214 Pg 215 Pg 216 Pg 217 Pg 218 |