Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 215

Question Number 66959    Answers: 0   Comments: 0

Question Number 66938    Answers: 2   Comments: 7

Question Number 66814    Answers: 0   Comments: 0

Let consider an integer serie {a_n x^n } given by a_n = H_n =Σ_(k=1) ^n (1/k) 1) Find out the largest domain D of convergence of that integer serie 2) ∀ x∈D , explicit the sum S(x) of the {a_n x^n } 3) Calculate ∫_(−1) ^1 S(1−x)S(x) dx .

Letconsideranintegerserie{anxn}givenbyan=Hn=nk=11k1)FindoutthelargestdomainDofconvergenceofthatintegerserie2)xD,explicitthesumS(x)ofthe{anxn}3)Calculate11S(1x)S(x)dx.

Question Number 66801    Answers: 0   Comments: 3

let f(x) =∫_0 ^2 (√(x+t^2 ))dt with x≥0 1) calculate f(x) 2)calculate g(x) =∫_0 ^2 (dt/(√(x+t^2 ))) 3)find the value[of ∫_0 ^2 (√(4+t^2 ))dt and ∫_0 ^2 (dt/(√(3+t^2 ))) 4) give g^′ (x) at form of integral.

letf(x)=02x+t2dtwithx01)calculatef(x)2)calculateg(x)=02dtx+t23)findthevalue[of024+t2dtand02dt3+t24)giveg(x)atformofintegral.

Question Number 66795    Answers: 0   Comments: 3

let f(x) =e^(−x) ln(1+x^2 ) 1) calculate f^((n)) (0) 2) developp f at integr serie

letf(x)=exln(1+x2)1)calculatef(n)(0)2)developpfatintegrserie

Question Number 66794    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(2arctan(2x)))/(9+x^2 ))dx

calculate0cos(2arctan(2x))9+x2dx

Question Number 66793    Answers: 0   Comments: 0

calculate ∫_0 ^1 cos(3arctanx)dx

calculate01cos(3arctanx)dx

Question Number 66792    Answers: 0   Comments: 1

calculate ∫_0 ^1 cos(2 arctan(x))dx

calculate01cos(2arctan(x))dx

Question Number 66790    Answers: 0   Comments: 0

find ∫_0 ^∞ (x/(sh(x)))dx

find0xsh(x)dx

Question Number 66787    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ (x^2 /(ch(x)))dx

findthevalueof0x2ch(x)dx

Question Number 66786    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (x/(ch(x)))dx

findthevalueof0xch(x)dx

Question Number 66740    Answers: 0   Comments: 1

∫_( 0) ^( 1) (√(1−x+x^2 −x^3 )) dx=?

101x+x2x3dx=?

Question Number 66739    Answers: 1   Comments: 0

find∫(√(dx ))

finddx

Question Number 66731    Answers: 0   Comments: 1

y=x^2 −3x y=2x find area

y=x23xy=2xfindarea

Question Number 66728    Answers: 2   Comments: 2

∫_1 ^∞ (1/(x(√(x^2 +1))))=?

11xx2+1=?

Question Number 66695    Answers: 1   Comments: 3

calculate ∫_0 ^∞ ((cos(arctanx))/(4+x^2 ))dx

calculate0cos(arctanx)4+x2dx

Question Number 66694    Answers: 0   Comments: 3

let f(a) =∫_(−∞) ^(+∞) (dx/((x^4 +x^2 +a))) with a∈](1/4),+∞[ 1) calculate f(a) 2)find also g(a) =∫_(−∞) ^(+∞) (dx/((x^4 +x^2 +a)^2 )) 3) find the value of integrals ∫_0 ^∞ (dx/((x^4 +x^2 +3))) and ∫_0 ^∞ (dx/((x^4 +x^2 +1)^2 )) 4) developp f at integrserie.

letf(a)=+dx(x4+x2+a)witha]14,+[1)calculatef(a)2)findalsog(a)=+dx(x4+x2+a)23)findthevalueofintegrals0dx(x4+x2+3)and0dx(x4+x2+1)24)developpfatintegrserie.

Question Number 66693    Answers: 1   Comments: 1

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)^3 ))

calculate+dx(x2x+1)3

Question Number 66627    Answers: 1   Comments: 4

Question Number 66589    Answers: 2   Comments: 5

∫((sinx)/(1+sinx+sin2x))dx

sinx1+sinx+sin2xdx

Question Number 66564    Answers: 0   Comments: 0

Question Number 66561    Answers: 1   Comments: 2

evaluate ∫_0 ^2 ∣ x+ 2∣ dx.

evaluate02x+2dx.

Question Number 66550    Answers: 0   Comments: 2

∫_0 ^1 ∫_((y/2) ) ^((1/2) ) e^(−x^2 ) dxdy=?

01y212ex2dxdy=?

Question Number 66540    Answers: 0   Comments: 0

graph the function r^2 =cos(2θ) and find the area?

graphthefunctionr2=cos(2θ)andfindthearea?

Question Number 66536    Answers: 0   Comments: 0

∫ln^(10) (x) sin^7 (x) dx

ln10(x)sin7(x)dx

Question Number 66520    Answers: 0   Comments: 1

find the length r=2/1−cosθ if θ between pi/2 to pi

findthelengthr=2/1cosθifθbetweenpi/2topi

  Pg 210      Pg 211      Pg 212      Pg 213      Pg 214      Pg 215      Pg 216      Pg 217      Pg 218      Pg 219   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com