Question and Answers Forum |
IntegrationQuestion and Answers: Page 217 |
∫((sinx)/(1+sinx+sin2x))dx |
![]() |
evaluate ∫_0 ^2 ∣ x+ 2∣ dx. |
∫_0 ^1 ∫_((y/2) ) ^((1/2) ) e^(−x^2 ) dxdy=? |
graph the function r^2 =cos(2θ) and find the area? |
∫ln^(10) (x) sin^7 (x) dx |
find the length r=2/1−cosθ if θ between pi/2 to pi |
find the area cos(2θ) |
find the area about cos(2θ) |
calculate Σ_(k=2) ^∞ (((−1)^k )/k) ζ(k) if ζ(s)=Σ_(n=1) ^∞ (1/n^s ) |
![]() |
∫e^x^2 dx=? |
calculate ∫_0 ^∞ (dx/((x^n +8)^3 )) withn>1 |
calculate I_n = ∫_0 ^∞ (dx/((x^n +3)^2 )) with n>1 |
find f(a,b) =∫_0 ^∞ ((cos(ax)cos(bx))/((x^2 +a^2 )(x^2 +b^2 )))dx with a>0 and b>0 2)calculate ∫_0 ^∞ ((cos(x)cos(2x))/((x^2 +1)(x^2 +4)))dx |
calculate ∫_0 ^∞ (dx/((x^2 +2i)( x^2 +4j))) with i=e^((iπ)/2) and j=e^(i((2π)/3)) |
calculate ∫_0 ^∞ (dx/((x^2 +3)(x^2 +8)^2 )) |
1) calculate by residus method ∫_0 ^∞ (dx/((1+x^2 )^3 )) 2) find the value of ∫_0 ^1 ((1+x^4 )/((1+x^2 )^3 ))dx |
Find ∫_1 ^∞ ((1/(E(x))) −(1/x))dx |
![]() |
![]() |
![]() |
![]() |
let I_n =∫_0 ^∞ (e^(nt) /((1+e^t )^(n+1) ))dt (n from N^★ ) )prove the existence of I_n 2)find lim_(n→+∞) I_n |
study the convergence of ∫_0 ^∞ (1−(√(x^n /(2+x^n ))))dx n∈N |
study the convergence of ∫_1 ^(+∞) ((arctan(x−1))/((x^2 −1)^(4/3) ))dx |
Pg 212 Pg 213 Pg 214 Pg 215 Pg 216 Pg 217 Pg 218 Pg 219 Pg 220 Pg 221 |