Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 218

Question Number 65950    Answers: 4   Comments: 0

∫_0 ^( π/2) tan^3 xdx = ?

0π/2tan3xdx=?

Question Number 65945    Answers: 0   Comments: 2

pls i need solution plssss...asap n lim ∈ ((r^3 /(r^4 +n^4 ))) n→∞ r=1 please try and understand the way i typed it

plsineedsolutionplssss...asapnlim(r3r4+n4)nr=1pleasetryandunderstandthewayitypedit

Question Number 65926    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−x) ln(1+x^2 )dx

find0exln(1+x2)dx

Question Number 65925    Answers: 0   Comments: 3

calculate ∫_0 ^1 e^(−2t) ln(1−t)dt

calculate01e2tln(1t)dt

Question Number 65924    Answers: 0   Comments: 1

calculate ∫_(−(π/6)) ^(π/6) (x/(sinx))dx

calculateπ6π6xsinxdx

Question Number 65923    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((1−cos(2x^2 ))/x^2 )dx

calculate01cos(2x2)x2dx

Question Number 65922    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((sin(3x^2 ))/x^2 )dx

calculate0sin(3x2)x2dx

Question Number 65920    Answers: 1   Comments: 1

fnd ∫ (dx/(x+2−(√(3+x^2 ))))

fnddxx+23+x2

Question Number 65919    Answers: 1   Comments: 1

find ∫ (dx/(x(√(x+1)) +(x+1)(√x))) 2) calculate ∫_1 ^(√3) (dx/(x(√(x+1)) +(x+1)(√x)))

finddxxx+1+(x+1)x2)calculate13dxxx+1+(x+1)x

Question Number 65878    Answers: 0   Comments: 5

Calculate lim_(a−>∞) ∫_0 ^∞ (dx/(1+x^a ))

Calculatelima>0dx1+xa

Question Number 65837    Answers: 0   Comments: 4

1) calculate ∫_(−∞) ^∞ (dx/(1+ix)) and ∫_(−∞) ^∞ (dx/(1−ix)) 2)deduce the value of ∫_(−∞) ^∞ (dx/(1+x^2 )) 3)calculate ∫_(−∞) ^∞ (dx/(1+ix^2 )) and ∫_(−∞) ^∞ (dx/(1−ix^2 )) 4)deduce the value of ∫_(−∞) ^∞ (dx/(1+x^4 ))

1)calculatedx1+ixanddx1ix2)deducethevalueofdx1+x23)calculatedx1+ix2anddx1ix24)deducethevalueofdx1+x4

Question Number 65834    Answers: 0   Comments: 1

∀ x, y >0 B(x,y)=∫_0 ^1 t^(x−1) (1−t)^(y−1) dt Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt 1) show that ∀ x>0 Γ(x+1)=xΓ(x) and lim_(n−>∞) ((x(x+1)......(x+n))/(n^x n!))=(1/(Γ(x))) and deduce that lim_(n−>∞) ((Γ(x+n))/(n^x Γ(n)))=1 b) Prove that if a function f satisfies f(x+1)=xf(x) et lim_(n−>∞) ((f(x+n))/(n^x f(n)))=1 then ∀ x>0 f(x)= f(1)Γ(x) 3) Show that B(x+1, y)=(x/(x+y))B(x,y) B(1,x)=(1/x) 2) Now let consider ∀ y f(x)=((B(x,y)Γ(x+y))/(Γ(y))) Show that f verify the same property as Γ ( just the both proved up ) 3) Deduce that ∀ x,y>0 B(x,y)=((Γ(x)Γ(y))/(Γ(x+y)))

x,y>0B(x,y)=01tx1(1t)y1dtΓ(x)=0tx1etdt1)showthatx>0Γ(x+1)=xΓ(x)andlimn>x(x+1)......(x+n)nxn!=1Γ(x)anddeducethatlimn>Γ(x+n)nxΓ(n)=1b)Provethatifafunctionfsatisfiesf(x+1)=xf(x)etlimn>f(x+n)nxf(n)=1thenx>0f(x)=f(1)Γ(x)3)ShowthatB(x+1,y)=xx+yB(x,y)B(1,x)=1x2)Nowletconsideryf(x)=B(x,y)Γ(x+y)Γ(y)ShowthatfverifythesamepropertyasΓ(justthebothprovedup)3)Deducethatx,y>0B(x,y)=Γ(x)Γ(y)Γ(x+y)

Question Number 65828    Answers: 0   Comments: 1

Let go toward a rational order of derivation Part 1 : What′s that special factor Let n , p and k three integer different of zero We state J_(n,k) (p)=∫_0 ^1 (1−x^n )^(p+(k/n)) dx and C_n (p)=Π_(k=0) ^(n−1) J_(n,k) (p) 1) a) Calculate C_1 (p) b) Prove that J_(n,k) (p)=(1/n)B((1/n),p+1+(k/n) ) and explicit C_n (p)in terms of n and p 2) Deduce that ∀ n>0 there exist a real a_n such as (na_n )^n C_n (p)= (1/(p+1)) 3) Study the convergence of the result suite (a_n )_n .Then show that lim_(n−>∞) na_n =1 Part 2: the rational order of derivation Let f ∈ C^1 (R,R) . We consider I_(1/n) (f) a function defined on R_+ by I_(1/n) (f)(x)= a_n ∫_0 ^x ((f(t))/((x−t)^(1−(1/n)) ))dt and D_(1/n) (f) = (I_(1/n) (f))^((1)) 1) a _ Prove that I_((1/n) ) (f)(x)= na_n x^(1/n) ∫_0 ^1 f(x(1−v^n ))dv then find D_(1/2) (t) b) Show that ∀ f∈C^1 (R,R) ∀ x∈R_(+ ) D_(1/n) (f)(x)= I_(1/n) (f)(x) + ((f(0))/((πx)^(1−(1/n)) )) 2)∀ p integer and k∈{0,...,n−1} explicit I_(1/n) (t^(p+(k/n)) ) in term of I_(n,k) (p) b) Prove that for polynomial function f the n− th composition I_(1/n) ._ ....I_(1/n) (f)(x)=∫_0 ^x f(t)dt , c) Deduce that ∀ f polynomial the function g =f −f(0) verify D_(1/n) ......D_(1/n) (g)(x) = g(x) 3) Widen that two formulas to all function that can be developp into integer serie 4) Try to find the relation between D_(1/n) .I_(1/n) (f) , I_(1/n) .D_(1/n) (f), and f 4) Show that ∀ x∈R_+ lim_(n−>∞) I_(1/n) (f)(x)= ∫_0 ^x f(t)dt pour g=f−f(0) lim_(n−>∞) D_(1/n) (g)(x)= g(x) conclusion the derivative of the function I_α (f) defined on R_+ by I_α (f)(x)= a_n ∫_0 ^x f(t)(x−t)^((1/n)−1) dt is called the derivative of order α

LetgotowardarationalorderofderivationPart1:WhatsthatspecialfactorLetn,pandkthreeintegerdifferentofzeroWestateJn,k(p)=01(1xn)p+kndxandCn(p)=n1k=0Jn,k(p)1)a)CalculateC1(p)b)ProvethatJn,k(p)=1nB(1n,p+1+kn)andexplicitCn(p)intermsofnandp2)Deducethatn>0thereexistarealansuchas(nan)nCn(p)=1p+13)Studytheconvergenceoftheresultsuite(an)n.Thenshowthatlimn>nan=1Part2:therationalorderofderivationLetfC1(R,R).WeconsiderI1n(f)afunctiondefinedonR+byI1n(f)(x)=an0xf(t)(xt)11ndtandD1n(f)=(I1n(f))(1)1)a_ProvethatI1n(f)(x)=nanx1n01f(x(1vn))dvthenfindD12(t)b)ShowthatfC1(R,R)xR+D1n(f)(x)=I1n(f)(x)+f(0)(πx)11n2)pintegerandk{0,...,n1}explicitI1n(tp+kn)intermofIn,k(p)b)ProvethatforpolynomialfunctionfthenthcompositionI1n.....I1n(f)(x)=0xf(t)dt,c)Deducethatfpolynomialthefunctiong=ff(0)verifyD1n......D1n(g)(x)=g(x)3)Widenthattwoformulastoallfunctionthatcanbedeveloppintointegerserie4)TrytofindtherelationbetweenD1n.I1n(f),I1n.D1n(f),andf4)ShowthatxR+limn>I1n(f)(x)=0xf(t)dtpourg=ff(0)limn>D1n(g)(x)=g(x)conclusionthederivativeofthefunctionIα(f)definedonR+byIα(f)(x)=an0xf(t)(xt)1n1dtiscalledthederivativeoforderα

Question Number 65827    Answers: 0   Comments: 0

Prove that ∫_0 ^1 (∫_(1/6) ^(5/6) (dv/((1−^v (√u) )^v )))du=ln2−2ln((√3)−1)

Provethat01(1656dv(1vu)v)du=ln22ln(31)

Question Number 65825    Answers: 0   Comments: 0

let consider two real numbers p and such as p^2 −q^2 =pq Prove that J= ∫_0 ^∞ (dv/(^q (√((1+^q (√(v^p )) )^p ))))= 1

letconsidertworealnumberspandsuchasp2q2=pqProvethatJ=0dvq(1+qvp)p=1

Question Number 65805    Answers: 2   Comments: 1

Prove that I_n =∫_0 ^(π/2) (dt/(1+(tant)^n )) does not depend of the term n deduces that ∫_0 ^∞ (dx/((x^(2035) +1)(x^2 +1)))=(π/4)

ProvethatIn=0π2dt1+(tant)ndoesnotdependofthetermndeducesthat0dx(x2035+1)(x2+1)=π4

Question Number 65788    Answers: 0   Comments: 0

Explicit f(a.b.c)=∫_0 ^(π/2) ((sec(x−a))/(b.cosx + c.sinx)) dx

Explicitf(a.b.c)=0π2sec(xa)b.cosx+c.sinxdx

Question Number 65786    Answers: 0   Comments: 0

Shows that ∣Γ(1+ix)∣^2 =(π/(xsinh(πx))) with Γ(z)=∫_0_ ^∞ t^(z−1) e^(−t) dt Then Prove that ∫_0 ^∞ ∣Γ(1+ix)∣^2 dx =(π/4)

ShowsthatΓ(1+ix)2=πxsinh(πx)withΓ(z)=0tz1etdtThenProvethat0Γ(1+ix)2dx=π4

Question Number 65776    Answers: 0   Comments: 1

find ∫_(−(π/4)) ^(π/4) ((cosx)/(2+5sinx))dx

findπ4π4cosx2+5sinxdx

Question Number 65775    Answers: 0   Comments: 1

calculate ∫_0 ^(2π) ((tanx)/(2+3cosx))dx

calculate02πtanx2+3cosxdx

Question Number 65774    Answers: 0   Comments: 0

find A_n = ∫_0 ^(2π) ((sin^2 x)/(sin^2 (((nx)/2))))dx (n>0)

findAn=02πsin2xsin2(nx2)dx(n>0)

Question Number 65773    Answers: 0   Comments: 2

let f(x) =∫_0 ^1 (dt/(1+x(√(1+t^2 )))) with x>0 1)detemine a explicit form of f(x) 2)find also g(x) =∫_0 ^1 ((√(1+t^2 ))/((1+x(√(1+t^2 )))^2 ))dt 3) find the value of integrals ∫_0 ^1 (dt/(1+2(√(1+t^2 )))) and ∫_0 ^1 (dt/((1+2(√(1+t^2 )))^2 ))

letf(x)=01dt1+x1+t2withx>01)detemineaexplicitformoff(x)2)findalsog(x)=011+t2(1+x1+t2)2dt3)findthevalueofintegrals01dt1+21+t2and01dt(1+21+t2)2

Question Number 65771    Answers: 0   Comments: 0

let X_n =∫_0 ^(π/4) sin^n xdx 1) calculate X_0 ,X_1 ,X_2 ,X_3 2) find X_n interms of n 3)find the value of ∫_0 ^(π/4) sin^8 xdx

letXn=0π4sinnxdx1)calculateX0,X1,X2,X32)findXnintermsofn3)findthevalueof0π4sin8xdx

Question Number 65770    Answers: 0   Comments: 2

let A_n =∫_0 ^(π/2) cos^n xdx 1) calculate A_0 ,A_2 and A_3 2)calculate A_n interms of n 3) find ∫_0 ^(π/2) cos^8 xdx

letAn=0π2cosnxdx1)calculateA0,A2andA32)calculateAnintermsofn3)find0π2cos8xdx

Question Number 65769    Answers: 0   Comments: 3

find the value of ∫_0 ^∞ (dx/((x^2 −2xcosθ +1)^2 ))

findthevalueof0dx(x22xcosθ+1)2

Question Number 65768    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (dx/(x^2 −2(cosθ)x +1))

findthevalueof0dxx22(cosθ)x+1

  Pg 213      Pg 214      Pg 215      Pg 216      Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com