Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 219

Question Number 66169    Answers: 0   Comments: 1

find the values of ∫_0 ^∞ cos(x^2 )dx and ∫_0 ^∞ sin(x^2 )dx(fresnel integrals) by using Γ(z) =∫_0 ^∞ t^(z−1) e^(−t) dt

findthevaluesof0cos(x2)dxand0sin(x2)dx(fresnelintegrals)byusingΓ(z)=0tz1etdt

Question Number 66168    Answers: 0   Comments: 0

prove without calculus that ∫_0 ^∞ cos(x^2 )dx=∫_0 ^∞ sin(x^2 )dx

provewithoutcalculusthat0cos(x2)dx=0sin(x2)dx

Question Number 66150    Answers: 0   Comments: 1

find ∫_0 ^∞ e^(−x^3 ) sin(x^3 )dx

find0ex3sin(x3)dx

Question Number 66096    Answers: 0   Comments: 2

∫ ((√((1+x^2 )))/x^2 ) dx = ?

(1+x2)x2dx=?

Question Number 66085    Answers: 0   Comments: 0

calculate ∫_0 ^1 ((arctan((√(x^2 +2))))/((x^2 +1)(√(x^2 +2))))dx

calculate01arctan(x2+2)(x2+1)x2+2dx

Question Number 66082    Answers: 0   Comments: 3

Question Number 66065    Answers: 0   Comments: 2

find the value of U_n =∫_(−∞) ^(+∞) e^(−nx^2 ) sin(x^2 −2x)dx find nature of the serie Σ U_n and Σe^(−n^2 ) U_n

findthevalueofUn=+enx2sin(x22x)dxfindnatureoftheserieΣUnandΣen2Un

Question Number 66064    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) cos(x^2 −x+1)dx

findthevalueof+cos(x2x+1)dx

Question Number 66062    Answers: 0   Comments: 3

let f(x) =∫_0 ^1 (dt/(ch(t)+xsh(t))) 1) find a explicit form of f(x) 2) determine g(x) =∫_0 ^1 (dt/((ch(t)+xsh(t))^2 )) 3) calculate ∫_0 ^1 (dt/(ch(t)+3sh(t))) and ∫_0 ^1 (dt/({ch(t)+3sh(t)}^2 ))

letf(x)=01dtch(t)+xsh(t)1)findaexplicitformoff(x)2)determineg(x)=01dt(ch(t)+xsh(t))23)calculate01dtch(t)+3sh(t)and01dt{ch(t)+3sh(t)}2

Question Number 66060    Answers: 0   Comments: 3

let f(x) =∫_0 ^(π/4) (dt/(x+tant)) with x real 1) find aexplicit form of f(x) 2)find also g(x) =∫_0 ^(π/4) (dt/((x+tant)^2 )) 3)give f^((n)) (x)at form of integral 4)calculate ∫_0 ^(π/4) (dt/(2+tant)) and ∫_0 ^(π/4) (dt/((2+tant)^2 ))

letf(x)=0π4dtx+tantwithxreal1)findaexplicitformoff(x)2)findalsog(x)=0π4dt(x+tant)23)givef(n)(x)atformofintegral4)calculate0π4dt2+tantand0π4dt(2+tant)2

Question Number 66048    Answers: 0   Comments: 1

∫(x/(√(ln(1/x)))) dx

xln(1/x)dx

Question Number 66044    Answers: 1   Comments: 0

Question Number 65988    Answers: 3   Comments: 1

∫dx/x^2 −x+1

dx/x2x+1

Question Number 66041    Answers: 0   Comments: 0

Question Number 65950    Answers: 4   Comments: 0

∫_0 ^( π/2) tan^3 xdx = ?

0π/2tan3xdx=?

Question Number 65945    Answers: 0   Comments: 2

pls i need solution plssss...asap n lim ∈ ((r^3 /(r^4 +n^4 ))) n→∞ r=1 please try and understand the way i typed it

plsineedsolutionplssss...asapnlim(r3r4+n4)nr=1pleasetryandunderstandthewayitypedit

Question Number 65926    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−x) ln(1+x^2 )dx

find0exln(1+x2)dx

Question Number 65925    Answers: 0   Comments: 3

calculate ∫_0 ^1 e^(−2t) ln(1−t)dt

calculate01e2tln(1t)dt

Question Number 65924    Answers: 0   Comments: 1

calculate ∫_(−(π/6)) ^(π/6) (x/(sinx))dx

calculateπ6π6xsinxdx

Question Number 65923    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((1−cos(2x^2 ))/x^2 )dx

calculate01cos(2x2)x2dx

Question Number 65922    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((sin(3x^2 ))/x^2 )dx

calculate0sin(3x2)x2dx

Question Number 65920    Answers: 1   Comments: 1

fnd ∫ (dx/(x+2−(√(3+x^2 ))))

fnddxx+23+x2

Question Number 65919    Answers: 1   Comments: 1

find ∫ (dx/(x(√(x+1)) +(x+1)(√x))) 2) calculate ∫_1 ^(√3) (dx/(x(√(x+1)) +(x+1)(√x)))

finddxxx+1+(x+1)x2)calculate13dxxx+1+(x+1)x

Question Number 65878    Answers: 0   Comments: 5

Calculate lim_(a−>∞) ∫_0 ^∞ (dx/(1+x^a ))

Calculatelima>0dx1+xa

Question Number 65837    Answers: 0   Comments: 4

1) calculate ∫_(−∞) ^∞ (dx/(1+ix)) and ∫_(−∞) ^∞ (dx/(1−ix)) 2)deduce the value of ∫_(−∞) ^∞ (dx/(1+x^2 )) 3)calculate ∫_(−∞) ^∞ (dx/(1+ix^2 )) and ∫_(−∞) ^∞ (dx/(1−ix^2 )) 4)deduce the value of ∫_(−∞) ^∞ (dx/(1+x^4 ))

1)calculatedx1+ixanddx1ix2)deducethevalueofdx1+x23)calculatedx1+ix2anddx1ix24)deducethevalueofdx1+x4

Question Number 65834    Answers: 0   Comments: 1

∀ x, y >0 B(x,y)=∫_0 ^1 t^(x−1) (1−t)^(y−1) dt Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt 1) show that ∀ x>0 Γ(x+1)=xΓ(x) and lim_(n−>∞) ((x(x+1)......(x+n))/(n^x n!))=(1/(Γ(x))) and deduce that lim_(n−>∞) ((Γ(x+n))/(n^x Γ(n)))=1 b) Prove that if a function f satisfies f(x+1)=xf(x) et lim_(n−>∞) ((f(x+n))/(n^x f(n)))=1 then ∀ x>0 f(x)= f(1)Γ(x) 3) Show that B(x+1, y)=(x/(x+y))B(x,y) B(1,x)=(1/x) 2) Now let consider ∀ y f(x)=((B(x,y)Γ(x+y))/(Γ(y))) Show that f verify the same property as Γ ( just the both proved up ) 3) Deduce that ∀ x,y>0 B(x,y)=((Γ(x)Γ(y))/(Γ(x+y)))

x,y>0B(x,y)=01tx1(1t)y1dtΓ(x)=0tx1etdt1)showthatx>0Γ(x+1)=xΓ(x)andlimn>x(x+1)......(x+n)nxn!=1Γ(x)anddeducethatlimn>Γ(x+n)nxΓ(n)=1b)Provethatifafunctionfsatisfiesf(x+1)=xf(x)etlimn>f(x+n)nxf(n)=1thenx>0f(x)=f(1)Γ(x)3)ShowthatB(x+1,y)=xx+yB(x,y)B(1,x)=1x2)Nowletconsideryf(x)=B(x,y)Γ(x+y)Γ(y)ShowthatfverifythesamepropertyasΓ(justthebothprovedup)3)Deducethatx,y>0B(x,y)=Γ(x)Γ(y)Γ(x+y)

  Pg 214      Pg 215      Pg 216      Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com