Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 220

Question Number 65828    Answers: 0   Comments: 1

Let go toward a rational order of derivation Part 1 : What′s that special factor Let n , p and k three integer different of zero We state J_(n,k) (p)=∫_0 ^1 (1−x^n )^(p+(k/n)) dx and C_n (p)=Π_(k=0) ^(n−1) J_(n,k) (p) 1) a) Calculate C_1 (p) b) Prove that J_(n,k) (p)=(1/n)B((1/n),p+1+(k/n) ) and explicit C_n (p)in terms of n and p 2) Deduce that ∀ n>0 there exist a real a_n such as (na_n )^n C_n (p)= (1/(p+1)) 3) Study the convergence of the result suite (a_n )_n .Then show that lim_(n−>∞) na_n =1 Part 2: the rational order of derivation Let f ∈ C^1 (R,R) . We consider I_(1/n) (f) a function defined on R_+ by I_(1/n) (f)(x)= a_n ∫_0 ^x ((f(t))/((x−t)^(1−(1/n)) ))dt and D_(1/n) (f) = (I_(1/n) (f))^((1)) 1) a _ Prove that I_((1/n) ) (f)(x)= na_n x^(1/n) ∫_0 ^1 f(x(1−v^n ))dv then find D_(1/2) (t) b) Show that ∀ f∈C^1 (R,R) ∀ x∈R_(+ ) D_(1/n) (f)(x)= I_(1/n) (f)(x) + ((f(0))/((πx)^(1−(1/n)) )) 2)∀ p integer and k∈{0,...,n−1} explicit I_(1/n) (t^(p+(k/n)) ) in term of I_(n,k) (p) b) Prove that for polynomial function f the n− th composition I_(1/n) ._ ....I_(1/n) (f)(x)=∫_0 ^x f(t)dt , c) Deduce that ∀ f polynomial the function g =f −f(0) verify D_(1/n) ......D_(1/n) (g)(x) = g(x) 3) Widen that two formulas to all function that can be developp into integer serie 4) Try to find the relation between D_(1/n) .I_(1/n) (f) , I_(1/n) .D_(1/n) (f), and f 4) Show that ∀ x∈R_+ lim_(n−>∞) I_(1/n) (f)(x)= ∫_0 ^x f(t)dt pour g=f−f(0) lim_(n−>∞) D_(1/n) (g)(x)= g(x) conclusion the derivative of the function I_α (f) defined on R_+ by I_α (f)(x)= a_n ∫_0 ^x f(t)(x−t)^((1/n)−1) dt is called the derivative of order α

LetgotowardarationalorderofderivationPart1:WhatsthatspecialfactorLetn,pandkthreeintegerdifferentofzeroWestateJn,k(p)=01(1xn)p+kndxandCn(p)=n1k=0Jn,k(p)1)a)CalculateC1(p)b)ProvethatJn,k(p)=1nB(1n,p+1+kn)andexplicitCn(p)intermsofnandp2)Deducethatn>0thereexistarealansuchas(nan)nCn(p)=1p+13)Studytheconvergenceoftheresultsuite(an)n.Thenshowthatlimn>nan=1Part2:therationalorderofderivationLetfC1(R,R).WeconsiderI1n(f)afunctiondefinedonR+byI1n(f)(x)=an0xf(t)(xt)11ndtandD1n(f)=(I1n(f))(1)1)a_ProvethatI1n(f)(x)=nanx1n01f(x(1vn))dvthenfindD12(t)b)ShowthatfC1(R,R)xR+D1n(f)(x)=I1n(f)(x)+f(0)(πx)11n2)pintegerandk{0,...,n1}explicitI1n(tp+kn)intermofIn,k(p)b)ProvethatforpolynomialfunctionfthenthcompositionI1n.....I1n(f)(x)=0xf(t)dt,c)Deducethatfpolynomialthefunctiong=ff(0)verifyD1n......D1n(g)(x)=g(x)3)Widenthattwoformulastoallfunctionthatcanbedeveloppintointegerserie4)TrytofindtherelationbetweenD1n.I1n(f),I1n.D1n(f),andf4)ShowthatxR+limn>I1n(f)(x)=0xf(t)dtpourg=ff(0)limn>D1n(g)(x)=g(x)conclusionthederivativeofthefunctionIα(f)definedonR+byIα(f)(x)=an0xf(t)(xt)1n1dtiscalledthederivativeoforderα

Question Number 65827    Answers: 0   Comments: 0

Prove that ∫_0 ^1 (∫_(1/6) ^(5/6) (dv/((1−^v (√u) )^v )))du=ln2−2ln((√3)−1)

Provethat01(1656dv(1vu)v)du=ln22ln(31)

Question Number 65825    Answers: 0   Comments: 0

let consider two real numbers p and such as p^2 −q^2 =pq Prove that J= ∫_0 ^∞ (dv/(^q (√((1+^q (√(v^p )) )^p ))))= 1

letconsidertworealnumberspandsuchasp2q2=pqProvethatJ=0dvq(1+qvp)p=1

Question Number 65805    Answers: 2   Comments: 1

Prove that I_n =∫_0 ^(π/2) (dt/(1+(tant)^n )) does not depend of the term n deduces that ∫_0 ^∞ (dx/((x^(2035) +1)(x^2 +1)))=(π/4)

ProvethatIn=0π2dt1+(tant)ndoesnotdependofthetermndeducesthat0dx(x2035+1)(x2+1)=π4

Question Number 65788    Answers: 0   Comments: 0

Explicit f(a.b.c)=∫_0 ^(π/2) ((sec(x−a))/(b.cosx + c.sinx)) dx

Explicitf(a.b.c)=0π2sec(xa)b.cosx+c.sinxdx

Question Number 65786    Answers: 0   Comments: 0

Shows that ∣Γ(1+ix)∣^2 =(π/(xsinh(πx))) with Γ(z)=∫_0_ ^∞ t^(z−1) e^(−t) dt Then Prove that ∫_0 ^∞ ∣Γ(1+ix)∣^2 dx =(π/4)

ShowsthatΓ(1+ix)2=πxsinh(πx)withΓ(z)=0tz1etdtThenProvethat0Γ(1+ix)2dx=π4

Question Number 65776    Answers: 0   Comments: 1

find ∫_(−(π/4)) ^(π/4) ((cosx)/(2+5sinx))dx

findπ4π4cosx2+5sinxdx

Question Number 65775    Answers: 0   Comments: 1

calculate ∫_0 ^(2π) ((tanx)/(2+3cosx))dx

calculate02πtanx2+3cosxdx

Question Number 65774    Answers: 0   Comments: 0

find A_n = ∫_0 ^(2π) ((sin^2 x)/(sin^2 (((nx)/2))))dx (n>0)

findAn=02πsin2xsin2(nx2)dx(n>0)

Question Number 65773    Answers: 0   Comments: 2

let f(x) =∫_0 ^1 (dt/(1+x(√(1+t^2 )))) with x>0 1)detemine a explicit form of f(x) 2)find also g(x) =∫_0 ^1 ((√(1+t^2 ))/((1+x(√(1+t^2 )))^2 ))dt 3) find the value of integrals ∫_0 ^1 (dt/(1+2(√(1+t^2 )))) and ∫_0 ^1 (dt/((1+2(√(1+t^2 )))^2 ))

letf(x)=01dt1+x1+t2withx>01)detemineaexplicitformoff(x)2)findalsog(x)=011+t2(1+x1+t2)2dt3)findthevalueofintegrals01dt1+21+t2and01dt(1+21+t2)2

Question Number 65771    Answers: 0   Comments: 0

let X_n =∫_0 ^(π/4) sin^n xdx 1) calculate X_0 ,X_1 ,X_2 ,X_3 2) find X_n interms of n 3)find the value of ∫_0 ^(π/4) sin^8 xdx

letXn=0π4sinnxdx1)calculateX0,X1,X2,X32)findXnintermsofn3)findthevalueof0π4sin8xdx

Question Number 65770    Answers: 0   Comments: 2

let A_n =∫_0 ^(π/2) cos^n xdx 1) calculate A_0 ,A_2 and A_3 2)calculate A_n interms of n 3) find ∫_0 ^(π/2) cos^8 xdx

letAn=0π2cosnxdx1)calculateA0,A2andA32)calculateAnintermsofn3)find0π2cos8xdx

Question Number 65769    Answers: 0   Comments: 3

find the value of ∫_0 ^∞ (dx/((x^2 −2xcosθ +1)^2 ))

findthevalueof0dx(x22xcosθ+1)2

Question Number 65768    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (dx/(x^2 −2(cosθ)x +1))

findthevalueof0dxx22(cosθ)x+1

Question Number 65767    Answers: 0   Comments: 0

let f(x) =∫_0 ^(+∞) (dt/(t^4 +x^4 )) with x>0 1) determine a explicit form of f(x) 2) find also g(x) =∫_0 ^∞ (dt/((t^4 +x^4 )^2 )) 3)give f^((n)) (x) at form of integral 4) calculate ∫_0 ^∞ (dt/(t^4 +8)) and ∫_0 ^∞ (dt/((t^4 +8)^2 )) 5) calculate A_n =∫_0 ^∞ (dt/((t^4 +x^4 )^n )) with n integr natural

letf(x)=0+dtt4+x4withx>01)determineaexplicitformoff(x)2)findalsog(x)=0dt(t4+x4)23)givef(n)(x)atformofintegral4)calculate0dtt4+8and0dt(t4+8)25)calculateAn=0dt(t4+x4)nwithnintegrnatural

Question Number 65763    Answers: 0   Comments: 0

Question Number 65740    Answers: 0   Comments: 1

Question Number 65736    Answers: 1   Comments: 2

∫_0 ^1 (√(1 + 4x^2 )) dx = ?

011+4x2dx=?

Question Number 65729    Answers: 0   Comments: 3

Question Number 65726    Answers: 0   Comments: 0

Question Number 65691    Answers: 1   Comments: 1

calculate ∫_0 ^(π/2) ((cos^2 x)/(cosx +sinx))dx

calculate0π2cos2xcosx+sinxdx

Question Number 65690    Answers: 0   Comments: 2

calculate ∫_0 ^1 ((ln^2 (x))/(1+x^2 ))dx

calculate01ln2(x)1+x2dx

Question Number 65687    Answers: 0   Comments: 0

∫_0 ^(2π) ((sin(3t))/(5−3cos(t))) dt=0 using Residue theorem

02πsin(3t)53cos(t)dt=0usingResiduetheorem

Question Number 65681    Answers: 1   Comments: 0

∫_0 ^1 (Π_(r=1) ^n (x+r))(Σ_(k=1) ^n (1/(x+k))) dx

01(nr=1(x+r))(nk=11x+k)dx

Question Number 65679    Answers: 0   Comments: 2

let A_n =∫_(−∞) ^(+∞) ((cos(2^n x))/((x^2 +3)^2 ))dx 1) calculate A_n interms of n 2)find nsture of the serie ΣA_n and Σn^n A_n

letAn=+cos(2nx)(x2+3)2dx1)calculateAnintermsofn2)findnstureoftheserieΣAnandΣnnAn

Question Number 65678    Answers: 1   Comments: 1

calculate ∫ ((3x+1)/((x^2 −4)(x^3 +2x−3)))dx

calculate3x+1(x24)(x3+2x3)dx

  Pg 215      Pg 216      Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com