Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 221

Question Number 65485    Answers: 2   Comments: 0

∫e^(cos^(−1) (x)) dx

ecos1(x)dx

Question Number 65478    Answers: 0   Comments: 1

Question Number 65455    Answers: 0   Comments: 2

find U_n = ∫_0 ^(+∞) (((−1)^x )/(2^x^2 (x^2 +4n^2 )))dx (n from N and n≥1) study nature of the serie Σ 2^n^2 U_n

findUn=0+(1)x2x2(x2+4n2)dx(nfromNandn1)studynatureoftheserieΣ2n2Un

Question Number 65450    Answers: 0   Comments: 1

Question Number 65445    Answers: 0   Comments: 2

find f(x) =∫_0 ^(π/4) ln(cost +xsint)dt

findf(x)=0π4ln(cost+xsint)dt

Question Number 65443    Answers: 0   Comments: 0

Question Number 65420    Answers: 0   Comments: 0

Question Number 65401    Answers: 0   Comments: 1

let f(x,y)=(x+y)(√(x+y−1)) calculate ∫∫_D f(x,y)dxdy with D ={(x,y)∈R^2 / 1≤x≤2 and 1≤y≤(√3)}

letf(x,y)=(x+y)x+y1calculateDf(x,y)dxdywithD={(x,y)R2/1x2and1y3}

Question Number 65400    Answers: 0   Comments: 0

find f(α) =∫_1 ^(+∞) ((arctan((α/x)))/(1+x^2 )) dx with α≥0

findf(α)=1+arctan(αx)1+x2dxwithα0

Question Number 65398    Answers: 0   Comments: 1

1) calculate A_n =∫∫_([1,n[^2 ) sin(x^2 +3y^2 ) e^(−x^2 −3y^2 ) dxdy 2) determine lim_(n→+∞) A_n

1)calculateAn=[1,n[2sin(x2+3y2)ex23y2dxdy2)determinelimn+An

Question Number 65399    Answers: 0   Comments: 1

1) calculate A_n = ∫∫_([0,n[^2 ) ((dxdy)/(√(x^2 +y^2 +4))) 2)find lim_(n→+∞) A_n

1)calculateAn=[0,n[2dxdyx2+y2+42)findlimn+An

Question Number 65395    Answers: 1   Comments: 1

Question Number 65387    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(2x)−arctanx)/x)dx

calculate0arctan(2x)arctanxxdx

Question Number 65372    Answers: 0   Comments: 4

I=∫_1 ^e (dx/(x(1+ln^2 x)))

I=1edxx(1+ln2x)

Question Number 65355    Answers: 2   Comments: 1

find ∫ (dx/(√((x+1)(x+2)(x+3))))

finddx(x+1)(x+2)(x+3)

Question Number 65354    Answers: 0   Comments: 3

find ∫ (dx/(√(x^2 +x−2)))

finddxx2+x2

Question Number 65352    Answers: 0   Comments: 1

give the integralA_n = ∫_1 ^(+∞) (dt/(1+x^n )) with n integr and n≥2 at form of serie.

givetheintegralAn=1+dt1+xnwithnintegrandn2atformofserie.

Question Number 65332    Answers: 0   Comments: 1

Question Number 65307    Answers: 1   Comments: 0

∫(((4x+3)dx)/(√(2x^2 +2x−3))) = ?

(4x+3)dx2x2+2x3=?

Question Number 65321    Answers: 0   Comments: 0

Question Number 65320    Answers: 0   Comments: 1

Question Number 65319    Answers: 3   Comments: 2

Question Number 65293    Answers: 0   Comments: 3

1) calculate ∫_(−∞) ^(+∞) (dx/(x−a)) with a ∈C 2) find the values of ∫_0 ^∞ (dx/(x^4 +1)) and ∫_0 ^∞ (dx/(x^6 +1)) by using the decomposition inside C(x).

1)calculate+dxxawithaC2)findthevaluesof0dxx4+1and0dxx6+1byusingthedecompositioninsideC(x).

Question Number 65290    Answers: 1   Comments: 3

f(x) =∫_0 ^1 (dt/(x+e^t )) with 0≤x≤1 1) find aexplicit form of f(x) 2) calculate ∫_0 ^1 (dt/(2+e^t )) 3) find g(x) =∫_0 ^1 (dt/((x+e^t )^2 )) 4) calculate ∫_0 ^1 (dt/((1+e^t )^2 )) 5) give f^((n)) (x) at form of integrals 6) developp f at integr serie.

f(x)=01dtx+etwith0x11)findaexplicitformoff(x)2)calculate01dt2+et3)findg(x)=01dt(x+et)24)calculate01dt(1+et)25)givef(n)(x)atformofintegrals6)developpfatintegrserie.

Question Number 65288    Answers: 0   Comments: 4

1) let f(x) =∫_0 ^(+∞) (dt/(t^3 +x^3 )) with x>0 calculate f(x) 2) find also g(x) =∫_0 ^∞ (dt/((t^3 +x^3 )^2 )) 3) find the values of integrals ∫_0 ^∞ (dt/(t^3 +1)) and ∫_0 ^∞ (dt/((t^3 +1)^2 )) 4) give f^((n)) (x) at form of integrals.

1)letf(x)=0+dtt3+x3withx>0calculatef(x)2)findalsog(x)=0dt(t3+x3)23)findthevaluesofintegrals0dtt3+1and0dt(t3+1)24)givef(n)(x)atformofintegrals.

Question Number 65287    Answers: 0   Comments: 1

let f(x) =x∣x∣ 2π periodic odd developp f at fourier series

letf(x)=xx2πperiodicodddeveloppfatfourierseries

  Pg 216      Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com