Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 222

Question Number 65015    Answers: 1   Comments: 3

∫(((√(x+1)) − (√(x−1)))/((√(x+1)) + (√(x−1)))) dx

x+1x1x+1+x1dx

Question Number 65004    Answers: 0   Comments: 1

let U_n = ∫_(1/n) ^(2/n) Γ(x)Γ(1−x)dx with n≥3 1) calculate and determine lim_(n→+∞) U_n 2) study the convergence of Σ U_n

letUn=1n2nΓ(x)Γ(1x)dxwithn31)calculateanddeterminelimn+Un2)studytheconvergenceofΣUn

Question Number 65003    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/(Γ(x))) with Γ(x) =∫_0 ^∞ t^(x−1) e^(−t) dt (x>0)

find0dxΓ(x)withΓ(x)=0tx1etdt(x>0)

Question Number 64994    Answers: 1   Comments: 1

∫(√(tanh(x))) dx

tanh(x)dx

Question Number 64993    Answers: 0   Comments: 0

let f(a) =∫_0 ^∞ ((cos(x^2 )−sin(x^2 ))/((x^2 +a^2 )^2 ))dx with a>0 1) calculate f(a) 2) find the values of ∫_0 ^∞ ((cos(x^2 )−sin(x^2 ))/((x^2 +1)^2 )) and ∫_0 ^∞ ((cos(x^2 )−sin(x^2 ))/((x^2 +3)^2 ))dx .

letf(a)=0cos(x2)sin(x2)(x2+a2)2dxwitha>01)calculatef(a)2)findthevaluesof0cos(x2)sin(x2)(x2+1)2and0cos(x2)sin(x2)(x2+3)2dx.

Question Number 64975    Answers: 0   Comments: 1

Question Number 64970    Answers: 0   Comments: 9

let f(a)=∫_0 ^∞ ((cos(x^2 ) +sin(x^2 ))/((x^2 +a^2 )^2 )) dx with a>0 1) calculate f(a) 2) find the values of ∫_0 ^∞ ((cos(x^2 )+sin(x^2 ))/((x^2 +1)^2 ))dx and ∫_0 ^∞ ((cos(x^2 )+sin(x^2 ))/((x^2 +3)^2 ))dx

letf(a)=0cos(x2)+sin(x2)(x2+a2)2dxwitha>01)calculatef(a)2)findthevaluesof0cos(x2)+sin(x2)(x2+1)2dxand0cos(x2)+sin(x2)(x2+3)2dx

Question Number 64905    Answers: 0   Comments: 0

∫log (tan x)dx

log(tanx)dx

Question Number 64904    Answers: 0   Comments: 2

calculate ∫_1 ^2 ∫_0 ^x (1/((x^2 +y^2 )^(3/2) ))dydx

calculate120x1(x2+y2)32dydx

Question Number 64866    Answers: 0   Comments: 3

find ∫_1 ^(+∞) (dx/(x^2 (√(1+x+x^2 ))))

find1+dxx21+x+x2

Question Number 64850    Answers: 0   Comments: 4

let A_λ =∫_0 ^π (dx/(λ +cosx +sinx)) (λ ∈ R) 1) find a explicit form of A_λ 2) find also B_λ =∫_0 ^π (dx/((λ +cosx +sinx)^2 )) 3) calculate ∫_0 ^π (dx/(2+cosx +sinx)) and ∫_0 ^π (dx/((3+cosx +sinx)^2 ))

letAλ=0πdxλ+cosx+sinx(λR)1)findaexplicitformofAλ2)findalsoBλ=0πdx(λ+cosx+sinx)23)calculate0πdx2+cosx+sinxand0πdx(3+cosx+sinx)2

Question Number 64818    Answers: 2   Comments: 1

find ∫ (dx/(1+cosx +cos(2x)))

finddx1+cosx+cos(2x)

Question Number 64805    Answers: 0   Comments: 0

∫log(((1+sinhx))/((1−sinhx)))tanhx dx

log(1+sinhx)(1sinhx)tanhxdx

Question Number 64802    Answers: 1   Comments: 1

∫(cos^4 x+sin^4 x)/(cos2x+1)dx

(cos4x+sin4x)/(cos2x+1)dx

Question Number 64801    Answers: 0   Comments: 0

∫(cos^4 x+sin^4 x)/(cos2x+1)dx

(cos4x+sin4x)/(cos2x+1)dx

Question Number 64762    Answers: 1   Comments: 1

Given that g(x)=(2/((1+x)(1+3x^2 )) a) express g(x) in partial fractions. b) evaluate ∫_0 ^1 g((x) dx.

Giventhatg(x)=2(1+x)(1+3x2a)expressg(x)inpartialfractions.b)evaluate01g((x)dx.

Question Number 64759    Answers: 0   Comments: 0

∫((ln(ln(x)))/((ln(x))^n )) dx , n≠1

ln(ln(x))(ln(x))ndx,n1

Question Number 64745    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((sin(lnx))/(lnx))dx

calculate01sin(lnx)lnxdx

Question Number 64873    Answers: 0   Comments: 4

let f(x) =∫_0 ^π (dt/(x+sint)) with xreal 1) find a explicit form of f(x) 2) find also g(x) =∫_0 ^π (dt/((x+sint)^2 )) 3) give f^((n)) (x) at form of integral 4) calculate ∫_0 ^π (dt/(3+sint)) and ∫_0 ^π (dt/((3+sint)^2 ))

letf(x)=0πdtx+sintwithxreal1)findaexplicitformoff(x)2)findalsog(x)=0πdt(x+sint)23)givef(n)(x)atformofintegral4)calculate0πdt3+sintand0πdt(3+sint)2

Question Number 64735    Answers: 0   Comments: 2

∫tanθ/1+^− sinθ dθ

tanθ/1+sinθdθ

Question Number 64733    Answers: 0   Comments: 0

∫(secθtanθ)dθ/secθ+^− tanθ

(secθtanθ)dθ/secθ+tanθ

Question Number 64687    Answers: 0   Comments: 1

Question Number 64677    Answers: 0   Comments: 4

let f(x) =∫_0 ^1 lnt ln(1−xt)dt with ∣x∣<1 1)determine a explicit form for f(x) 2) find also g(x) =∫_0 ^1 ((tlnt)/(1−xt))dt 3) give f^((n)) (x) at form of integral 4) calculate ∫_0 ^1 ln(t)ln(1−t)dt and ∫_0 ^1 ln(t)ln(2−t)dt 5) calculate ∫_0 ^1 ((tln(t))/(2−t)) dt .

letf(x)=01lntln(1xt)dtwithx∣<11)determineaexplicitformforf(x)2)findalsog(x)=01tlnt1xtdt3)givef(n)(x)atformofintegral4)calculate01ln(t)ln(1t)dtand01ln(t)ln(2t)dt5)calculate01tln(t)2tdt.

Question Number 64662    Answers: 1   Comments: 3

∫(dx/((x^8 +x^4 +1)^2 )) ∫_(1/x) ^x ((ln(t))/(t^2 +1)) dt

dx(x8+x4+1)21xxln(t)t2+1dt

Question Number 64649    Answers: 1   Comments: 1

calculate ∫_0 ^(2π) ((cosθ)/(5+3cosθ))dθ

calculate02πcosθ5+3cosθdθ

Question Number 64642    Answers: 0   Comments: 1

∫(dx)/e^x +x

(dx)/ex+x

  Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com