Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 223

Question Number 64801    Answers: 0   Comments: 0

∫(cos^4 x+sin^4 x)/(cos2x+1)dx

(cos4x+sin4x)/(cos2x+1)dx

Question Number 64762    Answers: 1   Comments: 1

Given that g(x)=(2/((1+x)(1+3x^2 )) a) express g(x) in partial fractions. b) evaluate ∫_0 ^1 g((x) dx.

Giventhatg(x)=2(1+x)(1+3x2a)expressg(x)inpartialfractions.b)evaluate01g((x)dx.

Question Number 64759    Answers: 0   Comments: 0

∫((ln(ln(x)))/((ln(x))^n )) dx , n≠1

ln(ln(x))(ln(x))ndx,n1

Question Number 64745    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((sin(lnx))/(lnx))dx

calculate01sin(lnx)lnxdx

Question Number 64873    Answers: 0   Comments: 4

let f(x) =∫_0 ^π (dt/(x+sint)) with xreal 1) find a explicit form of f(x) 2) find also g(x) =∫_0 ^π (dt/((x+sint)^2 )) 3) give f^((n)) (x) at form of integral 4) calculate ∫_0 ^π (dt/(3+sint)) and ∫_0 ^π (dt/((3+sint)^2 ))

letf(x)=0πdtx+sintwithxreal1)findaexplicitformoff(x)2)findalsog(x)=0πdt(x+sint)23)givef(n)(x)atformofintegral4)calculate0πdt3+sintand0πdt(3+sint)2

Question Number 64735    Answers: 0   Comments: 2

∫tanθ/1+^− sinθ dθ

tanθ/1+sinθdθ

Question Number 64733    Answers: 0   Comments: 0

∫(secθtanθ)dθ/secθ+^− tanθ

(secθtanθ)dθ/secθ+tanθ

Question Number 64687    Answers: 0   Comments: 1

Question Number 64677    Answers: 0   Comments: 4

let f(x) =∫_0 ^1 lnt ln(1−xt)dt with ∣x∣<1 1)determine a explicit form for f(x) 2) find also g(x) =∫_0 ^1 ((tlnt)/(1−xt))dt 3) give f^((n)) (x) at form of integral 4) calculate ∫_0 ^1 ln(t)ln(1−t)dt and ∫_0 ^1 ln(t)ln(2−t)dt 5) calculate ∫_0 ^1 ((tln(t))/(2−t)) dt .

letf(x)=01lntln(1xt)dtwithx∣<11)determineaexplicitformforf(x)2)findalsog(x)=01tlnt1xtdt3)givef(n)(x)atformofintegral4)calculate01ln(t)ln(1t)dtand01ln(t)ln(2t)dt5)calculate01tln(t)2tdt.

Question Number 64662    Answers: 1   Comments: 3

∫(dx/((x^8 +x^4 +1)^2 )) ∫_(1/x) ^x ((ln(t))/(t^2 +1)) dt

dx(x8+x4+1)21xxln(t)t2+1dt

Question Number 64649    Answers: 1   Comments: 1

calculate ∫_0 ^(2π) ((cosθ)/(5+3cosθ))dθ

calculate02πcosθ5+3cosθdθ

Question Number 64642    Answers: 0   Comments: 1

∫(dx)/e^x +x

(dx)/ex+x

Question Number 64635    Answers: 0   Comments: 1

1)calculate f(a) =∫_0 ^∞ ((arctan(αx))/(1+x^2 ))dx with α real 2) find the value of ∫_0 ^∞ ((arctan(2x))/(1+x^2 ))dx

1)calculatef(a)=0arctan(αx)1+x2dxwithαreal2)findthevalueof0arctan(2x)1+x2dx

Question Number 64579    Answers: 0   Comments: 1

∫ e^x^2 dx can we get a close form of this integral or analytic solution

ex2dxcanwegetacloseformofthisintegraloranalyticsolution

Question Number 64559    Answers: 0   Comments: 1

Question Number 64541    Answers: 1   Comments: 0

lol....QUESTION OF THE DAY SHOW FULL WORKINGS ∫x((((1−x^2 )Ln(1+x^2 )+(1+x^2 )−(1−x^2 )Ln(1−x^2 ))/((1−x^4 )(1+x^2 ))))e^((x^2 −1)/(x^2 +1)) dx

lol....QUESTIONOFTHEDAYSHOWFULLWORKINGSx((1x2)Ln(1+x2)+(1+x2)(1x2)Ln(1x2)(1x4)(1+x2))ex21x2+1dx

Question Number 64529    Answers: 0   Comments: 0

calculate ∫_1 ^2 (dx/(√x)) by Rieman sum.

calculate12dxxbyRiemansum.

Question Number 64528    Answers: 0   Comments: 1

find ∫_0 ^1 x^(−x) dx study first the convergence.

find01xxdxstudyfirsttheconvergence.

Question Number 64525    Answers: 0   Comments: 1

study the convergence of Σ U_n with U_n =∫_0 ^∞ ((cos(nx))/(x^2 +n^2 ))dx (n≥1)

studytheconvergenceofΣUnwithUn=0cos(nx)x2+n2dx(n1)

Question Number 64477    Answers: 0   Comments: 1

pls i need it urgently... am stuck workings please (1) ∫Ln(1−Lnx)dx (2) ∫(1/(Lnx))dx (3)∫ Ln(−2Lnx)dx God will honour u 4 ur replies

plsineediturgently...amstuckworkingsplease(1)Ln(1Lnx)dx(2)1Lnxdx(3)Ln(2Lnx)dxGodwillhonouru4urreplies

Question Number 64463    Answers: 0   Comments: 1

∫(√(sec(x))) dx

sec(x)dx

Question Number 64448    Answers: 1   Comments: 1

calculate lim_(x→π) ∫_(π/2) ^x (dx/(1+sinx−cosx))

calculatelimxππ2xdx1+sinxcosx

Question Number 64429    Answers: 0   Comments: 5

let f(x)=∫_0 ^1 (dt/(t+x+(√(t^2 +1)))) (x real parametre) 1) find a explicite form forf(x) 2)detemine also g(x) =∫_0 ^1 (dt/((t+x+(√(t^2 +1)))^2 )) 3)give f^((n)) (x) at form of integrals 4) find the values of ∫_0 ^1 (dt/(t+(√(t^2 +1)))) and ∫_0 ^1 (dt/((t+(√(t^2 +1)))^2 )) 5) find the values of ∫_0 ^1 (dt/(t+1 +(√(t^2 +1)))) and ∫_0 ^1 (dt/((t+1+(√(t^2 +1)))^2 ))

letf(x)=01dtt+x+t2+1(xrealparametre)1)findaexpliciteformforf(x)2)deteminealsog(x)=01dt(t+x+t2+1)23)givef(n)(x)atformofintegrals4)findthevaluesof01dtt+t2+1and01dt(t+t2+1)25)findthevaluesof01dtt+1+t2+1and01dt(t+1+t2+1)2

Question Number 64419    Answers: 0   Comments: 1

1) find ∫ (dx/(x−(√(1−x^2 )))) 2) calculate ∫_0 ^1 (dx/(x−(√(1−x^2 ))))

1)finddxx1x22)calculate01dxx1x2

Question Number 64418    Answers: 0   Comments: 3

1)find ∫ (dx/(x+(√(1+x^2 )))) 2) calculate ∫_0 ^1 (dx/(x+(√(1+x^2 ))))

1)finddxx+1+x22)calculate01dxx+1+x2

Question Number 64410    Answers: 1   Comments: 2

∫1/(1+ysinθ)dθ

1/(1+ysinθ)dθ

  Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com