Question and Answers Forum |
IntegrationQuestion and Answers: Page 223 |
∫(cos^4 x+sin^4 x)/(cos2x+1)dx |
Given that g(x)=(2/((1+x)(1+3x^2 )) a) express g(x) in partial fractions. b) evaluate ∫_0 ^1 g((x) dx. |
∫((ln(ln(x)))/((ln(x))^n )) dx , n≠1 |
calculate ∫_0 ^1 ((sin(lnx))/(lnx))dx |
let f(x) =∫_0 ^π (dt/(x+sint)) with xreal 1) find a explicit form of f(x) 2) find also g(x) =∫_0 ^π (dt/((x+sint)^2 )) 3) give f^((n)) (x) at form of integral 4) calculate ∫_0 ^π (dt/(3+sint)) and ∫_0 ^π (dt/((3+sint)^2 )) |
∫tanθ/1+^− sinθ dθ |
∫(secθtanθ)dθ/secθ+^− tanθ |
![]() |
let f(x) =∫_0 ^1 lnt ln(1−xt)dt with ∣x∣<1 1)determine a explicit form for f(x) 2) find also g(x) =∫_0 ^1 ((tlnt)/(1−xt))dt 3) give f^((n)) (x) at form of integral 4) calculate ∫_0 ^1 ln(t)ln(1−t)dt and ∫_0 ^1 ln(t)ln(2−t)dt 5) calculate ∫_0 ^1 ((tln(t))/(2−t)) dt . |
∫(dx/((x^8 +x^4 +1)^2 )) ∫_(1/x) ^x ((ln(t))/(t^2 +1)) dt |
calculate ∫_0 ^(2π) ((cosθ)/(5+3cosθ))dθ |
∫(dx)/e^x +x |
1)calculate f(a) =∫_0 ^∞ ((arctan(αx))/(1+x^2 ))dx with α real 2) find the value of ∫_0 ^∞ ((arctan(2x))/(1+x^2 ))dx |
∫ e^x^2 dx can we get a close form of this integral or analytic solution |
![]() |
lol....QUESTION OF THE DAY SHOW FULL WORKINGS ∫x((((1−x^2 )Ln(1+x^2 )+(1+x^2 )−(1−x^2 )Ln(1−x^2 ))/((1−x^4 )(1+x^2 ))))e^((x^2 −1)/(x^2 +1)) dx |
calculate ∫_1 ^2 (dx/(√x)) by Rieman sum. |
find ∫_0 ^1 x^(−x) dx study first the convergence. |
study the convergence of Σ U_n with U_n =∫_0 ^∞ ((cos(nx))/(x^2 +n^2 ))dx (n≥1) |
pls i need it urgently... am stuck workings please (1) ∫Ln(1−Lnx)dx (2) ∫(1/(Lnx))dx (3)∫ Ln(−2Lnx)dx God will honour u 4 ur replies |
∫(√(sec(x))) dx |
calculate lim_(x→π) ∫_(π/2) ^x (dx/(1+sinx−cosx)) |
let f(x)=∫_0 ^1 (dt/(t+x+(√(t^2 +1)))) (x real parametre) 1) find a explicite form forf(x) 2)detemine also g(x) =∫_0 ^1 (dt/((t+x+(√(t^2 +1)))^2 )) 3)give f^((n)) (x) at form of integrals 4) find the values of ∫_0 ^1 (dt/(t+(√(t^2 +1)))) and ∫_0 ^1 (dt/((t+(√(t^2 +1)))^2 )) 5) find the values of ∫_0 ^1 (dt/(t+1 +(√(t^2 +1)))) and ∫_0 ^1 (dt/((t+1+(√(t^2 +1)))^2 )) |
1) find ∫ (dx/(x−(√(1−x^2 )))) 2) calculate ∫_0 ^1 (dx/(x−(√(1−x^2 )))) |
1)find ∫ (dx/(x+(√(1+x^2 )))) 2) calculate ∫_0 ^1 (dx/(x+(√(1+x^2 )))) |
∫1/(1+ysinθ)dθ |
Pg 218 Pg 219 Pg 220 Pg 221 Pg 222 Pg 223 Pg 224 Pg 225 Pg 226 Pg 227 |