Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 225

Question Number 64121    Answers: 0   Comments: 0

∫tan(1/x)dx

tan(1/x)dx

Question Number 64106    Answers: 0   Comments: 0

∫tan(1/x)dx

tan(1/x)dx

Question Number 64105    Answers: 0   Comments: 0

∫tan(1/x)dx

tan(1/x)dx

Question Number 64104    Answers: 0   Comments: 0

∫tan(1/x)dx

tan(1/x)dx

Question Number 64103    Answers: 0   Comments: 0

∫tan(1/x)dx

tan(1/x)dx

Question Number 64102    Answers: 0   Comments: 0

∫tan(1/x)dx

tan(1/x)dx

Question Number 64068    Answers: 0   Comments: 1

calculate ∫_0 ^π ((tsint)/(3+sin^2 t)) dt

calculate0πtsint3+sin2tdt

Question Number 64065    Answers: 0   Comments: 3

calculate ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx

calculate01ln(1+x)1+x2dx

Question Number 64037    Answers: 0   Comments: 1

reduction formulas for n∈N, some n>0, some n>1 ∫sin^n x dx=−(1/n)cos x sin^(n−1) x +((n−1)/n)∫sin^(n−2) x dx ∫cos^n x dx=(1/n)sin x cos^(n−1) x +((n−1)/n)∫cos^(n−2) x dx ∫tan^n x dx=(1/(n−1))tan^(n−1) x −∫tan^(n−2) x dx ∫sec^n x dx=(1/(n−1))tan x sec^(n−2) x +((n−2)/(n−1))∫sec^(n−2) x dx ∫csc^n x dx=−(1/(n−1))cot x csc^(n−2) x +((n−2)/(n−1))∫csc^(n−2) x dx ∫cot^n x dx=−(1/(n−1))cot^(n−1) x −∫cot^(n−2) x dx

reductionformulasfornN,somen>0,somen>1sinnxdx=1ncosxsinn1x+n1nsinn2xdxcosnxdx=1nsinxcosn1x+n1ncosn2xdxtannxdx=1n1tann1xtann2xdxsecnxdx=1n1tanxsecn2x+n2n1secn2xdxcscnxdx=1n1cotxcscn2x+n2n1cscn2xdxcotnxdx=1n1cotn1xcotn2xdx

Question Number 63976    Answers: 0   Comments: 3

∫secxdx ?

secxdx?

Question Number 63927    Answers: 0   Comments: 7

∫_0 ^π (dx/((3+2cos x)^2 ))

0πdx(3+2cosx)2

Question Number 63903    Answers: 0   Comments: 0

Question Number 63892    Answers: 0   Comments: 3

calculate A=∫_0 ^∞ (x^(2017) /(1+x^(2019) )) dx and B =∫_0 ^∞ (x^(2019) /(1+x^(2021) )) dx calculate the fraction (A/B)

calculateA=0x20171+x2019dxandB=0x20191+x2021dxcalculatethefractionAB

Question Number 63881    Answers: 0   Comments: 1

∫e^x /Lnxdx

ex/Lnxdx

Question Number 63883    Answers: 0   Comments: 1

∫ln(x)ln(1−x)ln(1−2x)dx

ln(x)ln(1x)ln(12x)dx

Question Number 63852    Answers: 0   Comments: 0

prove that ∫_0 ^1 arctan(x) cot(((πx)/2)) dx = ((3 ln^2 (2))/(2π))+((lnπ ln2)/π)+∫_0 ^∞ ((ln(1+x^2 ))/(e^(2πx) +1)) dx

provethat01arctan(x)cot(πx2)dx=3ln2(2)2π+lnπln2π+0ln(1+x2)e2πx+1dx

Question Number 63844    Answers: 3   Comments: 3

∫(1+4x+x^2 )^m dx

(1+4x+x2)mdx

Question Number 63822    Answers: 0   Comments: 1

find ∫ (x^2 +1)(√((x+1)/(x−2)))dx

find(x2+1)x+1x2dx

Question Number 63782    Answers: 1   Comments: 4

let f(a) =∫_(−∞) ^(+∞) (dx/((a^2 +x^2 )^3 )) with a>0 1) calculate f(a) 2)calculste also g(a) =∫_(−∞) ^(+∞) (dx/((a^2 +x^2 )^4 )) 3) find the values of integrals ∫_0 ^∞ (dx/((x^2 +1)^3 )) ∫_0 ^∞ (dx/((x^2 +2)^4 ))

letf(a)=+dx(a2+x2)3witha>01)calculatef(a)2)calculstealsog(a)=+dx(a2+x2)43)findthevaluesofintegrals0dx(x2+1)30dx(x2+2)4

Question Number 63823    Answers: 0   Comments: 0

calculate ∫_(−∞) ^(+∞) ((3x^2 −1)/(x^4 −2x^2 +3))dx

calculate+3x21x42x2+3dx

Question Number 63748    Answers: 0   Comments: 0

Question Number 63738    Answers: 0   Comments: 0

useful formula ======== ∀a∈R^+ :∀b ∈R: a sin x +b cos x =(√(a^2 +b^2 ))sin (x+arctan (b/a)) ∫(dx/(a sin x +b cos x))= =(1/(√(a^2 +b^2 )))∫(dx/(sin (x+arctan (b/a))))= [t=x+arctan (b/a) → dx=dt] (1/(√(a^2 +b^2 )))∫(dt/(sin t))=−(1/(√(a^2 +b^2 )))ln ((1/(sin t))+(1/(tan t))) = =−(1/(√(a^2 +b^2 )))ln ∣(((√(a^2 +b^2 ))−b sin x +a cos x)/(a sin x +b cos x))∣ +C

usefulformula========aR+:bR:asinx+bcosx=a2+b2sin(x+arctanba)dxasinx+bcosx==1a2+b2dxsin(x+arctanba)=[t=x+arctanbadx=dt]1a2+b2dtsint=1a2+b2ln(1sint+1tant)==1a2+b2lna2+b2bsinx+acosxasinx+bcosx+C

Question Number 63722    Answers: 1   Comments: 6

1) calculate ∫ (x^2 −x+2)(√(x^2 −x+1))dx 2)find the value of ∫_0 ^1 (x^2 −x+2)(√(x^2 −x +1))dx .

1)calculate(x2x+2)x2x+1dx2)findthevalueof01(x2x+2)x2x+1dx.

Question Number 63721    Answers: 1   Comments: 2

calculate ∫ (dx/(√((x−1)(2−x))))

calculatedx(x1)(2x)

Question Number 63720    Answers: 1   Comments: 2

calculate ∫(√((x−3)(2−x)))dx

calculate(x3)(2x)dx

Question Number 63711    Answers: 1   Comments: 1

calculate ∫_0 ^π (dx/((√3)cosx +(√2)sinx))

calculate0πdx3cosx+2sinx

  Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com