Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 226

Question Number 63667    Answers: 0   Comments: 3

1) calculate ∫_0 ^(2π) (dt/(cost +x sint)) wih x from R. 2) calculate ∫_0 ^(2π) ((sint)/((cost +xsint)^2 ))dt 3) find[the value of ∫_0 ^(2π) (dt/(cos(2t)+2sin(2t)))

1)calculate02πdtcost+xsintwihxfromR.2)calculate02πsint(cost+xsint)2dt3)find[thevalueof02πdtcos(2t)+2sin(2t)

Question Number 63666    Answers: 0   Comments: 3

calculate ∫_0 ^(2π) (dx/(2sinx +cosx))

calculate02πdx2sinx+cosx

Question Number 63664    Answers: 0   Comments: 6

let f(x)=∫_0 ^∞ (t^(a−1) /(x+t^n )) dt with 0<a<1 and x>0 and n≥2 1) determine a explicit form of f(x) 2) calculate g(x) =∫_0 ^∞ (t^(a−1) /((x+t^n )^2 )) dt 3) find f^((k)) (x) at form of integrals 4) calculate ∫_0 ^∞ (t^(a−1) /(9+t^2 )) dt and ∫_0 ^∞ (t^(a−1) /((9+t^2 )^2 )) 5) calculate U_n =∫_0 ^∞ (t^((1/n)−1) /(2^n +t^n )) dt and study the convergence of Σ U_n

letf(x)=0ta1x+tndtwith0<a<1andx>0andn21)determineaexplicitformoff(x)2)calculateg(x)=0ta1(x+tn)2dt3)findf(k)(x)atformofintegrals4)calculate0ta19+t2dtand0ta1(9+t2)25)calculateUn=0t1n12n+tndtandstudytheconvergenceofΣUn

Question Number 63662    Answers: 0   Comments: 1

let A_n =∫_0 ^∞ (x^(a−1) /(1+x^n ))dx with n integr and n≥2 and 0<a<1 1) calculate A_n 2) find the values of ∫_0 ^∞ (x^(a−1) /(1+x^2 ))dx and ∫_0 ^∞ (x^(a−1) /(1+x^3 ))dx 3)calculate ∫_0 ^∞ (dx/((√x)(1+x^4 ))) and ∫_0 ^∞ (dx/((^3 (√x^2 ))(1+x^4 )))

letAn=0xa11+xndxwithnintegrandn2and0<a<11)calculateAn2)findthevaluesof0xa11+x2dxand0xa11+x3dx3)calculate0dxx(1+x4)and0dx(3x2)(1+x4)

Question Number 63661    Answers: 0   Comments: 1

let 0<a<1 find the valueof ∫_0 ^∞ (t^(a−1) /(1+t^2 ))dt

let0<a<1findthevalueof0ta11+t2dt

Question Number 63641    Answers: 0   Comments: 2

Question Number 63615    Answers: 0   Comments: 5

Question Number 63570    Answers: 1   Comments: 3

Question Number 63566    Answers: 0   Comments: 2

prove that ∫sin^n (x) dx , p∈n , p≥2 =− (1/n)cos(x) sin^(n−1) (x) + (p−1)∫sin^(n−2) (x) dx

provethatsinn(x)dx,pn,p2=1ncos(x)sinn1(x)+(p1)sinn2(x)dx

Question Number 63519    Answers: 0   Comments: 4

consider the general definite intergral I_n =∫_0 ^(π/2) sin^n xdx a) prove that for n≥2, nI_n =(n−1)I_(n−2) . b) Find the values of i)∫_0 ^(π/2) sin^5 dx ii) ∫_0 ^(π/2) sin^6 dx

considerthegeneraldefiniteintergralIn=0π2sinnxdxa)provethatforn2,nIn=(n1)In2.b)Findthevaluesofi)0π2sin5dxii)0π2sin6dx

Question Number 63510    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ (t^(a−1) /(x+t)) dt with x>0 and 0<a<1 1)calculate f(x) 2)calculate g(x)=∫_0 ^∞ (t^(a−1) /((x+t)^2 ))dt 3)find the value of∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt

letf(x)=0ta1x+tdtwithx>0and0<a<11)calculatef(x)2)calculateg(x)=0ta1(x+t)2dt3)findthevalueof0ta1(1+t)2dt

Question Number 63509    Answers: 1   Comments: 1

calculate ∫_(−1) ^1 ((√(1+x^2 )) −(√(1−x^2 )))dx

calculate11(1+x21x2)dx

Question Number 63508    Answers: 0   Comments: 4

let f(x) =∫_(−∞) ^(+∞) (dt/((t^2 +ixt −1))) with ∣x∣>2 (i^2 =−1) 1) extract Re(f(x)) and Im(f(x)) 2) calculate f(x) 3) find olso g(x) =∫_(−∞) ^(+∞) (t/((t^2 +ixt −1)^2 ))dt 4) find values of integrals ∫_(−∞) ^(+∞) (dt/((t^2 +3it −1))) and ∫_(−∞) ^(+∞) ((tdt)/((t^2 +3it −1)^2 )) 5) give f^((n)) (x) at form of integrals.

letf(x)=+dt(t2+ixt1)withx∣>2(i2=1)1)extractRe(f(x))andIm(f(x))2)calculatef(x)3)findolsog(x)=+t(t2+ixt1)2dt4)findvaluesofintegrals+dt(t2+3it1)and+tdt(t2+3it1)25)givef(n)(x)atformofintegrals.

Question Number 63433    Answers: 1   Comments: 1

∫_1 ^x x^2 −3x(√x)dx =((−716)/(15)) then calculate ∫_x ^(x+1) (1/(x+3))dx

x1x23xxdx=71615thencalculatex+1x1x+3dx

Question Number 63410    Answers: 2   Comments: 2

Question Number 63405    Answers: 0   Comments: 0

find ∫ (√((x^2 −4x+1)/(x+2)))dx

findx24x+1x+2dx

Question Number 63404    Answers: 1   Comments: 2

1) find ∫ ((x+1)/(x^3 −3x −2))dx 2) calculate ∫_4 ^(+∞) ((x+1)/(x^3 −3x +2))dx

1)findx+1x33x2dx2)calculate4+x+1x33x+2dx

Question Number 63395    Answers: 0   Comments: 3

let f(t) =∫_0 ^∞ ((ln(1+tx))/(1+x^2 ))dx with ∣t∣<1 1) determine a explicit form of f(t) 2) find the value of ∫_0 ^∞ ((ln(1+x))/(1+x^2 ))dx

letf(t)=0ln(1+tx)1+x2dxwitht∣<11)determineaexplicitformoff(t)2)findthevalueof0ln(1+x)1+x2dx

Question Number 63351    Answers: 3   Comments: 2

Question Number 63372    Answers: 1   Comments: 2

For what values of a and b will the integral ∫_a ^b (√(10−x−x^2 ))dx be at maximum

Forwhatvaluesofaandbwilltheintegralab10xx2dxbeatmaximum

Question Number 63273    Answers: 0   Comments: 1

let F(x) =∫_x^2 ^x^3 ((sin(t))/(t+x)) dt 1) calculate lim_(x→0) F(x) and lim_(x→+∞) F(x) 2)calculste lim_(x→0) F^′ (x) and lim_(x→+∞) F^′ (x)

letF(x)=x2x3sin(t)t+xdt1)calculatelimx0F(x)andlimx+F(x)2)calculstelimx0F(x)andlimx+F(x)

Question Number 63261    Answers: 0   Comments: 6

∫x tan(x) dx

xtan(x)dx

Question Number 63232    Answers: 0   Comments: 2

let B(x,y) =∫_0 ^1 (1−t)^(x−1) t^(y−1) dt 1) study the convergence of B(x,y) 1) prove that B(x,y)=B(y,x) prove that B(x,y) =∫_0 ^∞ (t^(x−1) /((1+t)^(x+y) )) dt 2) prove that B(x,y) =((Γ(x).Γ(y))/(Γ(x+y))) 3) prove that Γ(x).Γ(1−x) =(π/(sin(πx))) for allx ∈]0,1[

letB(x,y)=01(1t)x1ty1dt1)studytheconvergenceofB(x,y)1)provethatB(x,y)=B(y,x)provethatB(x,y)=0tx1(1+t)x+ydt2)provethatB(x,y)=Γ(x).Γ(y)Γ(x+y)3)provethatΓ(x).Γ(1x)=πsin(πx)forallx]0,1[

Question Number 63251    Answers: 0   Comments: 0

∫_( 0) ^( (π/2)) sin^(−1) (m cosθ) dθ

0π2sin1(mcosθ)dθ

Question Number 63214    Answers: 0   Comments: 1

calculate ∫_0 ^∞ x e^(−(x^2 /a^2 )) sin(bx)dx with a>0 and b>0

calculate0xex2a2sin(bx)dxwitha>0andb>0

Question Number 63268    Answers: 0   Comments: 0

  Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com