Question and Answers Forum |
IntegrationQuestion and Answers: Page 230 |
find ∫ (√((x−1)/(x^2 +3)))dx |
∫x(arctan(x))^2 dx ∫((x e^(arctan(x)) )/((1+x^2 )^(3/2) )) dx ∫((arcsin(x))/(√(1+x))) dx |
![]() |
![]() |
∫sin^(100) (x) cos^(100) (x) dx |
![]() |
∫ (x/(e^x − 1))dx, for x > 0 |
let f(x) =∫_0 ^1 ((arctan(1+xt))/(t^2 +1))dt determine a explicit form for f(x) 2)calculate ∫_0 ^1 ((arctan(1+2t))/(1+t^2 ))dt |
let ξ(x) =Σ_(n=1) ^∞ (1/n^x ) with x>1 1) calculate lim_(x→1^+ ) ξ(x) and lim_(x→+∞) ξ(x) 2) prove that ξ(x) =1+2^(−x) +o(2^(−x) ) (x→+∞) 3) prove that ξ is decreasing and convexe fucntion on]1,+∞[ |
let u_n (x)=(1/n^x ) −∫_n ^(n+1) (dt/t^x ) with x∈[1,2] 1)prove that 0≤ u_n (x)≤(1/n^x )−(1/((n+1)^x )) (n>0) 2)prove that Σ u_n (x)converges let γ =Σ_(n=1) ^∞ u_n (1) 3)find Σ_(n=1) ^∞ u_n (x) interms of ξ(x)and 1−x 4) prove that the converg.of Σu_n (x)is uniform prove that for x∈V(1) ξ(x) =(1/(x−1)) +γ +o(1) 5) find the value of Σ_(n=1) ^∞ (((−1)^(n−1) )/n)ln(n) |
calculate ∫_0 ^1 (2x^2 −1)(√(x^2 −2x+5))dx |
calculate ∫_0 ^1 Γ(t).Γ(1−t)dt |
prove that Γ(x).Γ(1−x) =(π/(sin(πx))) with 0<x<1 |
let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>1 calculate Γ^((n)) (x) for all integr n. |
calculate f(x,y) =∫_0 ^∞ e^(−xt) ln(yt) dt with x>0 and y>0 . |
find ∫ (e^x /(√(e^(2x) −1)))dx |
calculate lim_(n→+∞) ∫_0 ^n (1−(x/n))^n dx |
∫0dx= help |
calculate ∫_0 ^(π/4) {xΠ_(k=1) ^∞ cos((x/2^k ))}dx |
let f(ξ) =∫ (x^2 /(√(1−ξx^2 )))dx with 0<ξ<1 1) determine a explicit form of f(ξ) 2) calculate lim_(ξ→1) f(ξ) 3) calculate ∫_0 ^(1/2) (x^2 /(√(1−sin^2 θ x^2 ))) dx with 0<θ<(π/2) |
1) calculate f(x,y) =∫_0 ^∞ ((e^(−xt) cos(yt))/(√t)) dt and g(x,y) =∫_0 ^∞ ((e^(−xt) sin(yt))/(√t)) dt with x>0 and y>0 2) find the values of ∫_0 ^∞ ((e^(−2t) cos(t))/(√t)) dt and ∫_0 ^∞ ((e^(−t) cos(2t))/(√t)) dt |
find the value of ∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt with 0<a<1 |
∫_0 ^∞ e^(−x^2 ) dx |
∫((2sin(x)+3cos(x))/(3sin(x)+4cos(x)))dx |
find the value of I =∫_0 ^∞ ((e^(−t) sint)/(√t))dt and J =∫_0 ^∞ ((e^(−t) cos(t))/(√t))dt ,study first the convergence. |
∫ln(x+1)/(x^2 −x+1) limit ={ 0>2} |
Pg 225 Pg 226 Pg 227 Pg 228 Pg 229 Pg 230 Pg 231 Pg 232 Pg 233 Pg 234 |