Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 230

Question Number 62731    Answers: 0   Comments: 1

find ∫ (√((x−1)/(x^2 +3)))dx

findx1x2+3dx

Question Number 62653    Answers: 1   Comments: 4

∫x(arctan(x))^2 dx ∫((x e^(arctan(x)) )/((1+x^2 )^(3/2) )) dx ∫((arcsin(x))/(√(1+x))) dx

x(arctan(x))2dxxearctan(x)(1+x2)32dxarcsin(x)1+xdx

Question Number 62648    Answers: 0   Comments: 1

Question Number 62613    Answers: 3   Comments: 2

Question Number 62596    Answers: 1   Comments: 0

∫sin^(100) (x) cos^(100) (x) dx

sin100(x)cos100(x)dx

Question Number 62455    Answers: 0   Comments: 3

Question Number 62453    Answers: 0   Comments: 3

∫ (x/(e^x − 1))dx, for x > 0

xex1dx,forx>0

Question Number 62437    Answers: 0   Comments: 1

let f(x) =∫_0 ^1 ((arctan(1+xt))/(t^2 +1))dt determine a explicit form for f(x) 2)calculate ∫_0 ^1 ((arctan(1+2t))/(1+t^2 ))dt

letf(x)=01arctan(1+xt)t2+1dtdetermineaexplicitformforf(x)2)calculate01arctan(1+2t)1+t2dt

Question Number 62425    Answers: 0   Comments: 0

let ξ(x) =Σ_(n=1) ^∞ (1/n^x ) with x>1 1) calculate lim_(x→1^+ ) ξ(x) and lim_(x→+∞) ξ(x) 2) prove that ξ(x) =1+2^(−x) +o(2^(−x) ) (x→+∞) 3) prove that ξ is decreasing and convexe fucntion on]1,+∞[

letξ(x)=n=11nxwithx>11)calculatelimx1+ξ(x)andlimx+ξ(x)2)provethatξ(x)=1+2x+o(2x)(x+)3)provethatξisdecreasingandconvexefucntionon]1,+[

Question Number 62420    Answers: 0   Comments: 0

let u_n (x)=(1/n^x ) −∫_n ^(n+1) (dt/t^x ) with x∈[1,2] 1)prove that 0≤ u_n (x)≤(1/n^x )−(1/((n+1)^x )) (n>0) 2)prove that Σ u_n (x)converges let γ =Σ_(n=1) ^∞ u_n (1) 3)find Σ_(n=1) ^∞ u_n (x) interms of ξ(x)and 1−x 4) prove that the converg.of Σu_n (x)is uniform prove that for x∈V(1) ξ(x) =(1/(x−1)) +γ +o(1) 5) find the value of Σ_(n=1) ^∞ (((−1)^(n−1) )/n)ln(n)

letun(x)=1nxnn+1dttxwithx[1,2]1)provethat0un(x)1nx1(n+1)x(n>0)2)provethatΣun(x)convergesletγ=n=1un(1)3)findn=1un(x)intermsofξ(x)and1x4)provethattheconverg.ofΣun(x)isuniformprovethatforxV(1)ξ(x)=1x1+γ+o(1)5)findthevalueofn=1(1)n1nln(n)

Question Number 62419    Answers: 0   Comments: 1

calculate ∫_0 ^1 (2x^2 −1)(√(x^2 −2x+5))dx

calculate01(2x21)x22x+5dx

Question Number 62418    Answers: 0   Comments: 0

calculate ∫_0 ^1 Γ(t).Γ(1−t)dt

calculate01Γ(t).Γ(1t)dt

Question Number 62417    Answers: 0   Comments: 0

prove that Γ(x).Γ(1−x) =(π/(sin(πx))) with 0<x<1

provethatΓ(x).Γ(1x)=πsin(πx)with0<x<1

Question Number 62416    Answers: 0   Comments: 1

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>1 calculate Γ^((n)) (x) for all integr n.

letΓ(x)=0tx1etdtwithx>1calculateΓ(n)(x)forallintegrn.

Question Number 62415    Answers: 0   Comments: 1

calculate f(x,y) =∫_0 ^∞ e^(−xt) ln(yt) dt with x>0 and y>0 .

calculatef(x,y)=0extln(yt)dtwithx>0andy>0.

Question Number 62414    Answers: 1   Comments: 0

find ∫ (e^x /(√(e^(2x) −1)))dx

findexe2x1dx

Question Number 62412    Answers: 0   Comments: 2

calculate lim_(n→+∞) ∫_0 ^n (1−(x/n))^n dx

calculatelimn+0n(1xn)ndx

Question Number 62389    Answers: 1   Comments: 1

∫0dx= help

0dx=help

Question Number 62343    Answers: 1   Comments: 1

calculate ∫_0 ^(π/4) {xΠ_(k=1) ^∞ cos((x/2^k ))}dx

calculate0π4{xk=1cos(x2k)}dx

Question Number 62342    Answers: 1   Comments: 4

let f(ξ) =∫ (x^2 /(√(1−ξx^2 )))dx with 0<ξ<1 1) determine a explicit form of f(ξ) 2) calculate lim_(ξ→1) f(ξ) 3) calculate ∫_0 ^(1/2) (x^2 /(√(1−sin^2 θ x^2 ))) dx with 0<θ<(π/2)

letf(ξ)=x21ξx2dxwith0<ξ<11)determineaexplicitformoff(ξ)2)calculatelimξ1f(ξ)3)calculate012x21sin2θx2dxwith0<θ<π2

Question Number 62335    Answers: 0   Comments: 2

1) calculate f(x,y) =∫_0 ^∞ ((e^(−xt) cos(yt))/(√t)) dt and g(x,y) =∫_0 ^∞ ((e^(−xt) sin(yt))/(√t)) dt with x>0 and y>0 2) find the values of ∫_0 ^∞ ((e^(−2t) cos(t))/(√t)) dt and ∫_0 ^∞ ((e^(−t) cos(2t))/(√t)) dt

1)calculatef(x,y)=0extcos(yt)tdtandg(x,y)=0extsin(yt)tdtwithx>0andy>02)findthevaluesof0e2tcos(t)tdtand0etcos(2t)tdt

Question Number 62330    Answers: 1   Comments: 1

find the value of ∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt with 0<a<1

findthevalueof0ta1(1+t)2dtwith0<a<1

Question Number 62274    Answers: 1   Comments: 4

∫_0 ^∞ e^(−x^2 ) dx

0ex2dx

Question Number 62266    Answers: 1   Comments: 1

∫((2sin(x)+3cos(x))/(3sin(x)+4cos(x)))dx

2sin(x)+3cos(x)3sin(x)+4cos(x)dx

Question Number 62262    Answers: 1   Comments: 1

find the value of I =∫_0 ^∞ ((e^(−t) sint)/(√t))dt and J =∫_0 ^∞ ((e^(−t) cos(t))/(√t))dt ,study first the convergence.

findthevalueofI=0etsinttdtandJ=0etcos(t)tdt,studyfirsttheconvergence.

Question Number 62252    Answers: 0   Comments: 1

∫ln(x+1)/(x^2 −x+1) limit ={ 0>2}

ln(x+1)/(x2x+1)limit={0>2}

  Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230      Pg 231      Pg 232      Pg 233      Pg 234   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com