Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 231

Question Number 62335    Answers: 0   Comments: 2

1) calculate f(x,y) =∫_0 ^∞ ((e^(−xt) cos(yt))/(√t)) dt and g(x,y) =∫_0 ^∞ ((e^(−xt) sin(yt))/(√t)) dt with x>0 and y>0 2) find the values of ∫_0 ^∞ ((e^(−2t) cos(t))/(√t)) dt and ∫_0 ^∞ ((e^(−t) cos(2t))/(√t)) dt

1)calculatef(x,y)=0extcos(yt)tdtandg(x,y)=0extsin(yt)tdtwithx>0andy>02)findthevaluesof0e2tcos(t)tdtand0etcos(2t)tdt

Question Number 62330    Answers: 1   Comments: 1

find the value of ∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt with 0<a<1

findthevalueof0ta1(1+t)2dtwith0<a<1

Question Number 62274    Answers: 1   Comments: 4

∫_0 ^∞ e^(−x^2 ) dx

0ex2dx

Question Number 62266    Answers: 1   Comments: 1

∫((2sin(x)+3cos(x))/(3sin(x)+4cos(x)))dx

2sin(x)+3cos(x)3sin(x)+4cos(x)dx

Question Number 62262    Answers: 1   Comments: 1

find the value of I =∫_0 ^∞ ((e^(−t) sint)/(√t))dt and J =∫_0 ^∞ ((e^(−t) cos(t))/(√t))dt ,study first the convergence.

findthevalueofI=0etsinttdtandJ=0etcos(t)tdt,studyfirsttheconvergence.

Question Number 62252    Answers: 0   Comments: 1

∫ln(x+1)/(x^2 −x+1) limit ={ 0>2}

ln(x+1)/(x2x+1)limit={0>2}

Question Number 62251    Answers: 0   Comments: 1

∫(x^2 −4)^(1/2) dx trig substitution only

(x24)1/2dxtrigsubstitutiononly

Question Number 62232    Answers: 0   Comments: 4

Question Number 62227    Answers: 0   Comments: 3

1.∫(√(1+x+x^2 +x^3 ))dx=? 2.∫ ((√(1−tgx))/(sinx)) dx=? 3.∫ e^x .ln(1+(√(1+x^2 )))dx=? 4.∫ ((sinx)/(1+sinx+sin2x)) dx=?

1.1+x+x2+x3dx=?2.1tgxsinxdx=?3.ex.ln(1+1+x2)dx=?4.sinx1+sinx+sin2xdx=?

Question Number 62220    Answers: 0   Comments: 2

let f(x) =∫_0 ^∞ (t^2 /(x^6 +t^6 )) dt with x>0 1) calculate f(x) 2) calculate g(x) =∫_0 ^∞ (t^2 /((x^6 +t^6 )^2 ))dt 3) find values of integrals ∫_0 ^∞ (t^2 /(t^6 +8))dt and ∫_0 ^∞ (t^2 /((t^6 +8)^2 ))dt .

letf(x)=0t2x6+t6dtwithx>01)calculatef(x)2)calculateg(x)=0t2(x6+t6)2dt3)findvaluesofintegrals0t2t6+8dtand0t2(t6+8)2dt.

Question Number 62213    Answers: 0   Comments: 1

calculate ∫∫∫_D e^(−x^2 −y^2 ) (√(x^2 +y^2 +z^2 ))dxdydz with D ={(x,y,z)∈R^3 / 0≤x≤1 , 1≤y≤2 and 2≤z≤3 }

calculateDex2y2x2+y2+z2dxdydzwithD={(x,y,z)R3/0x1,1y2and2z3}

Question Number 62209    Answers: 1   Comments: 1

find g(a) =∫(x+a)(√(x^2 −a^2 ))dx

findg(a)=(x+a)x2a2dx

Question Number 62208    Answers: 1   Comments: 2

find f(a) =∫ (x−a)(√(x^2 +a^2 ))dx

findf(a)=(xa)x2+a2dx

Question Number 62207    Answers: 1   Comments: 1

calculate ∫ ((x+3)/((x−2)(√(x^2 +x+1)))) dx

calculatex+3(x2)x2+x+1dx

Question Number 62203    Answers: 0   Comments: 1

calculate ∫∫_([0,2]^2 ) ((arctan((√(x^2 +y^2 ))))/(3−(√(x^2 +y^2 ))))dxdy

calculate[0,2]2arctan(x2+y2)3x2+y2dxdy

Question Number 62201    Answers: 0   Comments: 1

calculate ∫∫_W e^(x−2y) sin(x+2y) dxdy W ={(x,y)^2 / 0≤x≤1 and 2≤y≤(√5)}

calculateWex2ysin(x+2y)dxdyW={(x,y)2/0x1and2y5}

Question Number 62198    Answers: 0   Comments: 0

find ∫∫_([0,1]) ((x^2 −y^2 )/(3−(√(x^2 +y^2 )))) dxdy .

find[0,1]x2y23x2+y2dxdy.

Question Number 62197    Answers: 0   Comments: 1

calculate ∫∫_([0,1]^2 ) (√(x^2 +y^2 ))sin((√(x^2 +y^2 )))dxdy

calculate[0,1]2x2+y2sin(x2+y2)dxdy

Question Number 62196    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((ln(2+e^(−t^2 ) ))/(t^2 +3))dt

calculate0ln(2+et2)t2+3dt

Question Number 62195    Answers: 0   Comments: 0

calculate A_n =∫_(−∞) ^(+∞) (dx/((x^2 +x+1)^n )) with n integr natural(n≥1)

calculateAn=+dx(x2+x+1)nwithnintegrnatural(n1)

Question Number 62186    Answers: 0   Comments: 0

∫(e^(3x^2 ) /((1−x^4 ))^(1/8) ) dx

e3x21x48dx

Question Number 62185    Answers: 1   Comments: 0

∫(dx/(sin3x+sin4x))

dxsin3x+sin4x

Question Number 62179    Answers: 0   Comments: 1

∫_( 0) ^( 2 (√(ln 3))) ∫_( (y/2)) ^( (√(ln 3))) e^x^2 dx dy

02ln3y2ln3ex2dxdy

Question Number 62147    Answers: 0   Comments: 0

Question Number 62146    Answers: 0   Comments: 0

calculate ∫ (√((x−1)/(x^2 +3)))dx .

calculatex1x2+3dx.

Question Number 62145    Answers: 1   Comments: 1

calculate ∫_0 ^π ln(x^2 −2xsinθ +1)dθ

calculate0πln(x22xsinθ+1)dθ

  Pg 226      Pg 227      Pg 228      Pg 229      Pg 230      Pg 231      Pg 232      Pg 233      Pg 234      Pg 235   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com