Question and Answers Forum |
IntegrationQuestion and Answers: Page 232 |
∫_(0 ) ^1 ((3x^3 −x^2 +2x−4)/(√(x^2 −3x+2))) dx |
![]() |
find ∫_0 ^∞ (x^2 /(e^x^2 −1))dx |
∫_(2π) ^(4π) (√(1−cos(x))) dx |
∫_0 ^(√(3−x^2 )) ((xy(4−x^2 −y^2 )(√(4−x^2 −y^2 ))−xy)/3) dy |
find ∫ (dx/(sin(2x)+tan(x)))dx |
find ∫ ((x^2 −(√(x−1)))/(2(√(x^2 +3)))) dx |
find ∫ (dx/(cos(2x)+tan(x))) |
∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x)))) dx =? |
calculate A =∫_0 ^∞ cos(x^n )dx and B =∫_0 ^∞ sin(x^n )dx with n≥2 (n integr natural) |
∫(dx/(2+sin(x))) |
calculate ∫_(−(π/4)) ^(π/4) ((cosx)/(e^(1/x) +1)) dx |
1) calculate ∫∫_R^+^2 ((dxdy)/((1+x^2 )(1+y^2 ))) 2) find the value of ∫_0 ^∞ ((ln(x))/(x^2 −1)) dx . |
let U_n = ∫_0 ^∞ (dt/((1+t^3 )^n )) dt (n≥1) 1) calculate (U_(n+1) /U_n ) 2) study the serie Σln((U_(n+1) /U_n )) and prove that lim_(n→+∞) U_n =0 |
a.∫_( 0) ^( (𝛑/4)) (√(1+tgx)) dx=? b.∫_( 0) ^( 1) (√(1+lnx)) dx=? |
∫_0 ^∞ e^(−e^x ) ln(x) dx = 0.27634 |
calculate ∫∫_D ∫(√(x^2 +y^2 +z^2 ))dxdydz with D ={(x,y,z) / 0≤x≤1 ,1≤y≤2 , 2≤z≤3 } |
calculate ∫∫_W (x^2 −2y^2 )(√(x^2 +y^2 +3))dxdy with W ={ (x,y) ∈ R^2 / 1≤x ≤(√3) and x^2 +y^2 −2y ≤ 2 } |
∫(√(tan(x))) dx |
calvulate ∫∫_w (x^2 −y^2 )e^(−x−y) dxdy with W={(x,y)∈R^2 /0≤x≤1 and 1≤y≤3} |
∫_2 ^4 ((√(ln(9−(6−x)))/((√(ln(9−x))) + (√(ln(3−x))))) dx |
![]() |
calculate ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx |
calculate f(a) =∫∫_W (x+ay)e^(−x) e^(−ay) dxdy with W_a ={(x,y)∈R^2 /x≥0 ,y≥0 , x+ay ≤1 } a>0 |
∫∫_([0,1]^2 ) ((x−y)/((x^2 +3y^(2 ) +1)^2 )) dxdy |
let U_n =∫_0 ^∞ (x^(−2n) /(1+x^4 )) dx with n integr natural and n≥1 1) calculate U_n interms of n 2) find lim_(n→+∞) n^2 U_n 3) study the serie Σ U_n |
Pg 227 Pg 228 Pg 229 Pg 230 Pg 231 Pg 232 Pg 233 Pg 234 Pg 235 Pg 236 |