Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 232

Question Number 61855    Answers: 1   Comments: 0

∫_(0 ) ^1 ((3x^3 −x^2 +2x−4)/(√(x^2 −3x+2))) dx

013x3x2+2x4x23x+2dx

Question Number 61809    Answers: 1   Comments: 1

Question Number 61803    Answers: 0   Comments: 3

find ∫_0 ^∞ (x^2 /(e^x^2 −1))dx

find0x2ex21dx

Question Number 61801    Answers: 0   Comments: 3

∫_(2π) ^(4π) (√(1−cos(x))) dx

4π2π1cos(x)dx

Question Number 61785    Answers: 1   Comments: 0

∫_0 ^(√(3−x^2 )) ((xy(4−x^2 −y^2 )(√(4−x^2 −y^2 ))−xy)/3) dy

3x20xy(4x2y2)4x2y2xy3dy

Question Number 61748    Answers: 0   Comments: 1

find ∫ (dx/(sin(2x)+tan(x)))dx

finddxsin(2x)+tan(x)dx

Question Number 61750    Answers: 0   Comments: 0

find ∫ ((x^2 −(√(x−1)))/(2(√(x^2 +3)))) dx

findx2x12x2+3dx

Question Number 61749    Answers: 0   Comments: 0

find ∫ (dx/(cos(2x)+tan(x)))

finddxcos(2x)+tan(x)

Question Number 61735    Answers: 0   Comments: 0

∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x)))) dx =?

11(sin(x)sinh1(x))(sin1(x)sinh(x))dx=?

Question Number 61721    Answers: 0   Comments: 0

calculate A =∫_0 ^∞ cos(x^n )dx and B =∫_0 ^∞ sin(x^n )dx with n≥2 (n integr natural)

calculateA=0cos(xn)dxandB=0sin(xn)dxwithn2(nintegrnatural)

Question Number 61719    Answers: 0   Comments: 1

∫(dx/(2+sin(x)))

dx2+sin(x)

Question Number 61662    Answers: 0   Comments: 1

calculate ∫_(−(π/4)) ^(π/4) ((cosx)/(e^(1/x) +1)) dx

calculateπ4π4cosxe1x+1dx

Question Number 61661    Answers: 0   Comments: 1

1) calculate ∫∫_R^+^2 ((dxdy)/((1+x^2 )(1+y^2 ))) 2) find the value of ∫_0 ^∞ ((ln(x))/(x^2 −1)) dx .

1)calculateR+2dxdy(1+x2)(1+y2)2)findthevalueof0ln(x)x21dx.

Question Number 61660    Answers: 0   Comments: 1

let U_n = ∫_0 ^∞ (dt/((1+t^3 )^n )) dt (n≥1) 1) calculate (U_(n+1) /U_n ) 2) study the serie Σln((U_(n+1) /U_n )) and prove that lim_(n→+∞) U_n =0

letUn=0dt(1+t3)ndt(n1)1)calculateUn+1Un2)studytheserieΣln(Un+1Un)andprovethatlimn+Un=0

Question Number 61674    Answers: 1   Comments: 4

a.∫_( 0) ^( (𝛑/4)) (√(1+tgx)) dx=? b.∫_( 0) ^( 1) (√(1+lnx)) dx=?

a.π401+tgxdx=?b.101+lnxdx=?

Question Number 61654    Answers: 0   Comments: 0

∫_0 ^∞ e^(−e^x ) ln(x) dx = 0.27634

0eexln(x)dx=0.27634

Question Number 61645    Answers: 0   Comments: 1

calculate ∫∫_D ∫(√(x^2 +y^2 +z^2 ))dxdydz with D ={(x,y,z) / 0≤x≤1 ,1≤y≤2 , 2≤z≤3 }

calculateDx2+y2+z2dxdydzwithD={(x,y,z)/0x1,1y2,2z3}

Question Number 61648    Answers: 0   Comments: 1

calculate ∫∫_W (x^2 −2y^2 )(√(x^2 +y^2 +3))dxdy with W ={ (x,y) ∈ R^2 / 1≤x ≤(√3) and x^2 +y^2 −2y ≤ 2 }

calculateW(x22y2)x2+y2+3dxdywithW={(x,y)R2/1x3andx2+y22y2}

Question Number 61667    Answers: 1   Comments: 0

∫(√(tan(x))) dx

tan(x)dx

Question Number 61601    Answers: 1   Comments: 1

calvulate ∫∫_w (x^2 −y^2 )e^(−x−y) dxdy with W={(x,y)∈R^2 /0≤x≤1 and 1≤y≤3}

calvulatew(x2y2)exydxdywithW={(x,y)R2/0x1and1y3}

Question Number 61566    Answers: 1   Comments: 0

∫_2 ^4 ((√(ln(9−(6−x)))/((√(ln(9−x))) + (√(ln(3−x))))) dx

24ln(9(6x)ln(9x)+ln(3x)dx

Question Number 61545    Answers: 0   Comments: 0

Question Number 61535    Answers: 0   Comments: 0

calculate ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx

calculate0π2ln(1+cosx)cosxdx

Question Number 61534    Answers: 0   Comments: 0

calculate f(a) =∫∫_W (x+ay)e^(−x) e^(−ay) dxdy with W_a ={(x,y)∈R^2 /x≥0 ,y≥0 , x+ay ≤1 } a>0

calculatef(a)=W(x+ay)exeaydxdywithWa={(x,y)R2/x0,y0,x+ay1}a>0

Question Number 61533    Answers: 0   Comments: 2

∫∫_([0,1]^2 ) ((x−y)/((x^2 +3y^(2 ) +1)^2 )) dxdy

[0,1]2xy(x2+3y2+1)2dxdy

Question Number 61530    Answers: 0   Comments: 5

let U_n =∫_0 ^∞ (x^(−2n) /(1+x^4 )) dx with n integr natural and n≥1 1) calculate U_n interms of n 2) find lim_(n→+∞) n^2 U_n 3) study the serie Σ U_n

letUn=0x2n1+x4dxwithnintegrnaturalandn11)calculateUnintermsofn2)findlimn+n2Un3)studytheserieΣUn

  Pg 227      Pg 228      Pg 229      Pg 230      Pg 231      Pg 232      Pg 233      Pg 234      Pg 235      Pg 236   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com