Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 233

Question Number 61328    Answers: 0   Comments: 4

let f(a) =∫_0 ^1 ((sin(2x))/(1+ax^2 )) dx with ∣a∣<1 1) approximate f(a) by a polynom 2) find the value (perhaps not exact) of ∫_0 ^1 ((sin(2x))/(1+2x^2 )) dx 3) let g(a) = ∫_0 ^1 ((x^2 sin(2x))/((1+ax^2 )^2 )) dx approximat g(a) by a polynom 4) find the value of ∫_0 ^1 ((x^2 sin(2x))/((1+2x^2 )^2 )) dx .

letf(a)=01sin(2x)1+ax2dxwitha∣<11)approximatef(a)byapolynom2)findthevalue(perhapsnotexact)of01sin(2x)1+2x2dx3)letg(a)=01x2sin(2x)(1+ax2)2dxapproximatg(a)byapolynom4)findthevalueof01x2sin(2x)(1+2x2)2dx.

Question Number 61326    Answers: 0   Comments: 4

find ∫_0 ^1 ((sinx)/(1+x^2 ))dx

find01sinx1+x2dx

Question Number 61240    Answers: 1   Comments: 3

∫ ((x^(2 ) − 4)/((x^2 + 4)^2 )) dx

x24(x2+4)2dx

Question Number 61237    Answers: 0   Comments: 0

Question Number 61232    Answers: 0   Comments: 3

let U_n =∫_1 ^(+∞) (([nx]−[(n−1)x])/x^3 ) dx with n≥1 1) find U_n interms of n 2) find lim_(n→+∞) U_n 3) study the serie Σ_(n=1) ^∞ U_n

letUn=1+[nx][(n1)x]x3dxwithn11)findUnintermsofn2)findlimn+Un3)studytheserien=1Un

Question Number 61229    Answers: 1   Comments: 0

let f_n (a) =∫_0 ^a x^n (√(a^2 −x^2 ))dx with a>0 1) determine a explicit form of f(a) 2) let g_n (a) =f^′ (a) give g_n (a) at form of integral and give its value 3) find the value of ∫_0 ^2 x^3 (√(4−x^2 ))dx and ∫_0 ^(√3) x^4 (√(3−x^2 ))dx

letfn(a)=0axna2x2dxwitha>01)determineaexplicitformoff(a)2)letgn(a)=f(a)givegn(a)atformofintegralandgiveitsvalue3)findthevalueof02x34x2dxand03x43x2dx

Question Number 61208    Answers: 0   Comments: 8

Question Number 61056    Answers: 2   Comments: 0

∫ ((x + sin(x))/(1 + cos(x))) dx

x+sin(x)1+cos(x)dx

Question Number 61045    Answers: 2   Comments: 2

calculate I =∫_0 ^1 cos(2arctanx)dx and J =∫_0 ^1 sin(2arctanx)dx

calculateI=01cos(2arctanx)dxandJ=01sin(2arctanx)dx

Question Number 61041    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) (([2x]−[x])/x^4 ) dx

calculate1+[2x][x]x4dx

Question Number 61039    Answers: 0   Comments: 1

find ∫_0 ^1 arctan((2/(1+x)))dx

find01arctan(21+x)dx

Question Number 60976    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ (1/n^2 ) by use of integral ∫_0 ^(π/2) ln(2cosθ)dθ .

findn=11n2byuseofintegral0π2ln(2cosθ)dθ.

Question Number 60967    Answers: 0   Comments: 4

study the integral ∫_(−∞) ^(+∞) (1−cos((2/(x^2 +1))))dx

studytheintegral+(1cos(2x2+1))dx

Question Number 60960    Answers: 0   Comments: 2

find ∫_(−∞) ^(+∞) tan((1/(1+x^2 )))dx

find+tan(11+x2)dx

Question Number 60944    Answers: 1   Comments: 1

∫(dx/((1+x^2 )^(3/2) )) solve this pls

dx(1+x2)32solvethispls

Question Number 60938    Answers: 0   Comments: 1

∫((csc^(2019) (x))/(sec^5 (x))) tan^2 (x) dx

csc2019(x)sec5(x)tan2(x)dx

Question Number 60901    Answers: 1   Comments: 0

find ∫ arctan((1/(1+x^2 )))dx

findarctan(11+x2)dx

Question Number 60894    Answers: 0   Comments: 0

study the convergence of ∫_0 ^1 (((√(1+2x))−(√(1+x)))/(ln(1+x)))dx and determine its value.

studytheconvergenceof011+2x1+xln(1+x)dxanddetermineitsvalue.

Question Number 60893    Answers: 1   Comments: 1

calculate ∫_0 ^(π/2) (dx/((√2)cos^2 x +(√3)sin^2 x))

calculate0π2dx2cos2x+3sin2x

Question Number 60881    Answers: 0   Comments: 3

∫_(−π) ^π sin((1/(1−x^2 ))) dx

ππsin(11x2)dx

Question Number 60797    Answers: 0   Comments: 2

∫(e^w /w^(n+1) )dw, n∈N

ewwn+1dw,nN

Question Number 60791    Answers: 1   Comments: 2

∫(e^n /x^(n+1) )dx, n∈N

enxn+1dx,nN

Question Number 60783    Answers: 0   Comments: 2

∫_(−∞) ^∞ sin((1/(1+x^2 ))) dx

sin(11+x2)dx

Question Number 60739    Answers: 1   Comments: 4

evaluate i.∫ (((x+1)/(x−1)))dx ii. ∫_0 ^π (2cosxsinx)dx iii. ∫_((π/(3 )) ) ^π (((sin2x)/(cos2x)))dx

evaluatei.(x+1x1)dxii.0π(2cosxsinx)dxiii.π3π(sin2xcos2x)dx

Question Number 60731    Answers: 0   Comments: 0

Question Number 60728    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) ((ln(lnx))/(x^2 −x +1))dx

calculate1+ln(lnx)x2x+1dx

  Pg 228      Pg 229      Pg 230      Pg 231      Pg 232      Pg 233      Pg 234      Pg 235      Pg 236      Pg 237   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com