Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 235

Question Number 60680    Answers: 0   Comments: 2

study the integral ∫_0 ^1 (x/(ln(1−x)))dx

studytheintegral01xln(1x)dx

Question Number 60679    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((ln(1+e^(−x^2 ) ))/(x^2 +4)) dx

calculate0ln(1+ex2)x2+4dx

Question Number 60678    Answers: 0   Comments: 3

calculate ∫_0 ^1 ((ln(1−x^2 ))/x) dx

calculate01ln(1x2)xdx

Question Number 60670    Answers: 1   Comments: 2

Question Number 60675    Answers: 0   Comments: 0

∫_0 ^(π/2) ln[((ln^2 (sin(x)))/(π^2 +ln^2 (sinx)))]((ln(cos(x)))/(tan(x)))dx

0π2ln[ln2(sin(x))π2+ln2(sinx)]ln(cos(x))tan(x)dx

Question Number 60662    Answers: 0   Comments: 0

Question Number 60659    Answers: 1   Comments: 1

find ∫_0 ^1 ln(x)ln(1−x^2 )dx

find01ln(x)ln(1x2)dx

Question Number 60658    Answers: 0   Comments: 1

calculate ∫_0 ^1 ln(x)ln(1−x)ln(1−x^2 )dx

calculate01ln(x)ln(1x)ln(1x2)dx

Question Number 60637    Answers: 1   Comments: 1

Question Number 60623    Answers: 0   Comments: 0

What are all intregal methods that exist like trigonometry sub. Gaussian method feyman method ?

Whatareallintregalmethodsthatexistliketrigonometrysub.Gaussianmethodfeymanmethod?

Question Number 60621    Answers: 0   Comments: 5

if π is rational then there exists a I_n =(v^(2n) /(n!))∫_0 ^π x^n (x−π)^n sin(x)dx can someone give a easier way to expaned this

ifπisrationalthenthereexistsaIn=v2nn!π0xn(xπ)nsin(x)dxcansomeonegiveaeasierwaytoexpanedthis

Question Number 60631    Answers: 0   Comments: 0

prove that∫_(−∞) ^∞ x^5 e^(−x^2 ) sin(x^3 ) dx=0.25474

provethatx5ex2sin(x3)dx=0.25474

Question Number 60586    Answers: 0   Comments: 1

find ∫_0 ^1 ((ln^2 (x))/((1−x^2 )^2 ))dx

find01ln2(x)(1x2)2dx

Question Number 60534    Answers: 0   Comments: 1

Question Number 60506    Answers: 0   Comments: 1

calculate ∫∫_W ((√(2x^2 +3y^2 ))/(x+y)) dxdy with W ={(x,y)∈R^2 / 0<x<1 and 0<y<1.

calculateW2x2+3y2x+ydxdywithW={(x,y)R2/0<x<1and0<y<1.

Question Number 60498    Answers: 0   Comments: 4

let f(t) =∫_0 ^3 (√(t +x +x^2 ))dx with t ≥(1/4) 1) find a explicit form of f(t) 2) find also g(t) = ∫_0 ^3 (dx/(√(t+x +x^2 ))) 3) calculate ∫_0 ^3 (√(1+x+x^2 ))dx , ∫_0 ^3 (√(2 +x+x^2 ))dx ∫_0 ^3 (dx/(√(2+x +x^2 ))) .

letf(t)=03t+x+x2dxwitht141)findaexplicitformoff(t)2)findalsog(t)=03dxt+x+x23)calculate031+x+x2dx,032+x+x2dx03dx2+x+x2.

Question Number 60595    Answers: 0   Comments: 2

let f(a) =∫_0 ^1 ((ln^2 (x))/((1−ax)^2 )) dx with ∣a∣<1 1) find a explicit form of f(a) 2) determine A(θ) =∫_0 ^1 ((ln^2 (x))/((1−(cosθ)x)^2 ))dx with 0<θ<(π/2)

letf(a)=01ln2(x)(1ax)2dxwitha∣<11)findaexplicitformoff(a)2)determineA(θ)=01ln2(x)(1(cosθ)x)2dxwith0<θ<π2

Question Number 60496    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((lnx)/((1−x)^2 ))dx

calculate01lnx(1x)2dx

Question Number 60495    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((ln(x))/((1−x^2 )^2 ))dx

findthevalueof01ln(x)(1x2)2dx

Question Number 60494    Answers: 1   Comments: 1

find ∫ (√((√(2+x^2 ))−x))dx

find2+x2xdx

Question Number 60481    Answers: 0   Comments: 0

Question Number 60424    Answers: 0   Comments: 2

let z ∈C and ∣z∣<1 find f(x)=∫_0 ^1 ln(1+zx)dx.

letzCandz∣<1findf(x)=01ln(1+zx)dx.

Question Number 60413    Answers: 1   Comments: 4

Question Number 60384    Answers: 0   Comments: 0

∫e^(coth^(−1) (x)) dx

ecoth1(x)dx

Question Number 60376    Answers: 1   Comments: 2

Question Number 60335    Answers: 0   Comments: 0

find I_n = ∫ x^n arctan(x)dx with n integr natural.

findIn=xnarctan(x)dxwithnintegrnatural.

  Pg 230      Pg 231      Pg 232      Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com