Question and Answers Forum |
IntegrationQuestion and Answers: Page 236 |
![]() |
![]() |
![]() |
find the general solution y(t) of the ordinary differential equation y′′ + ω^2 y=cos ωt ,where w>0 |
∫((x−1)/(√(2x−x^2 ))) dx |
find I_n =∫ (dx/(sin^n x)) with n integr natural. |
Evaluate ∫_0 ^3 (((x^2 +3x)/x^3 )) |
![]() |
![]() |
1) calculate ∫_0 ^(2π) (dx/(acosx +bsinx)) with a , b reals 2)find also ∫_0 ^(2π) ((cosx dx)/((acosx +bsinx)^2 )) and ∫_0 ^(2π) ((sinx dx)/((acosx +bsinx)^2 )) 3) find the value of ∫_0 ^(2π) (dx/(2cosx +(√3)sinx)) |
let f(x) =∫ (dt/((x+t)(√(t^2 −x^2 )))) 1) determine a explicit form of f(x) 2) determine ∫ (dt/((x+2)(√(t^2 −4)))) and ∫ (dt/((x+1)(√(t^2 −1)))) |
find ∫ ((sin(2x))/(1+cos^2 x))dx |
![]() |
let f(x) =∫_0 ^1 (dt/(1+xch(t))) with x real 1) determine a explicit form of f(x) 2)find also g(x)=∫_0 ^1 (dt/((1+xch(t))^2 )) 3) calculate ∫_0 ^1 (dt/(1+3ch(t))) and ∫_0 ^1 (dt/((1+3ch(t))^2 )) |
calculate ∫_0 ^1 (dx/(2sh(x)+3ch(x))) |
![]() |
![]() |
∫_a ^b (e^(−x^2 ) )dx=? |
1) ∫_0 ^(10π) ([sec^(−1) x]+[cot^(−1) x] ) dx = ? 2)area bounded by curve y=ln(x) and the lines y=0,y=ln(3) and x=0 is equal to ? |
∫_0 ^∞ (1/(cos(x)+sinh(x))) dx |
![]() |
∫((xdx)/(sin x)) = ? |
∫ e^x (((1−sin x)/(1−cos x)))dx = ? |
calculate f(x)=∫_0 ^∞ e^(−x[t]) sin([t])dt with x>0 2) calculate ∫_0 ^∞ e^(−3[t]) sin([t])dt . |
find ∫_0 ^(π/2) (x/(sinx))dx |
let f(x) =∫_0 ^∞ ((ln(1+xt^2 ))/(2+t^2 )) dt determine a explicit form of f(x) 2)calculate ∫_0 ^∞ ((ln(1+3x^2 ))/(2+t^2 ))dt |
Pg 231 Pg 232 Pg 233 Pg 234 Pg 235 Pg 236 Pg 237 Pg 238 Pg 239 Pg 240 |