Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 238

Question Number 57746    Answers: 0   Comments: 4

let f(x)=∫_(−∞) ^(+∞) (dt/((t^2 −2xt +1)^2 )) with ∣x∣<1 (x real) 1) determine a explicit form for f(x) 2) find also g(x) =∫_(−∞) ^(+∞) ((tdt)/((t^2 −2xt +1)^3 )) 3) calculate ∫_(−∞) ^(+∞) (dt/((t^2 −(√2)t +1)^2 )) and ∫_(−∞) ^(+∞) ((tdt)/((t^2 −(√2)t +1)^3 )) 4) calculate A(θ) =∫_(−∞) ^(+∞) (dt/((t^2 −2cosθ t+1)^2 )) and B(θ) =∫_(−∞) ^(+∞) ((tdt)/((t^2 −2cosθ t +1)^3 )) with 0<θ <(π/2) .

letf(x)=+dt(t22xt+1)2withx∣<1(xreal)1)determineaexplicitformforf(x)2)findalsog(x)=+tdt(t22xt+1)33)calculate+dt(t22t+1)2and+tdt(t22t+1)34)calculateA(θ)=+dt(t22cosθt+1)2andB(θ)=+tdt(t22cosθt+1)3with0<θ<π2.

Question Number 57668    Answers: 0   Comments: 3

let V_n = ∫_0 ^(1+(1/n)) ((x+1)/(√(2x^2 +3))) dx 1) calculate lim_(n→+∞) V_n 2) find nature of the serie Σ V_n

letVn=01+1nx+12x2+3dx1)calculatelimn+Vn2)findnatureoftheserieΣVn

Question Number 57667    Answers: 0   Comments: 3

calculate U_n =∫_(π/n) ^((2π)/n) (dx/(2 +sinx)) 1) calculate U_n and lim_(n→+∞) nU_n 2) find nature of Σ U_n

calculateUn=πn2πndx2+sinx1)calculateUnandlimn+nUn2)findnatureofΣUn

Question Number 57666    Answers: 0   Comments: 3

1) calculate f(θ) =∫_0 ^1 (√(t^2 +2sinθt +1))dt with 0≤θ≤(π/2) 2) calculate g(t) =∫_0 ^1 (√(t^2 +2(sinθ)t +1))dθ 3) find also h(θ) =∫_0 ^1 (t/(√(t^2 +2(sinθ)t +1)))dt

1)calculatef(θ)=01t2+2sinθt+1dtwith0θπ22)calculateg(t)=01t2+2(sinθ)t+1dθ3)findalsoh(θ)=01tt2+2(sinθ)t+1dt

Question Number 57665    Answers: 0   Comments: 4

let f(a) =∫_(π/4) ^(π/3) (√(a+tan^2 x))dx with a>0 1) find a explicit form of f(a) 2) find also g(a) =∫_(π/4) ^(π/3) (dx/(√(a+tan^2 x))) 3) find the values of ∫_(π/4) ^(π/3) (√(2+tan^2 x))dx and ∫_(π/4) ^(π/3) (dx/(√(3+tan^2 x)))

letf(a)=π4π3a+tan2xdxwitha>01)findaexplicitformoff(a)2)findalsog(a)=π4π3dxa+tan2x3)findthevaluesofπ4π32+tan2xdxandπ4π3dx3+tan2x

Question Number 57653    Answers: 0   Comments: 5

is it possible to find the exact value of I? I=∫_0 ^π sin (sin x) dx

isitpossibletofindtheexactvalueofI?I=π0sin(sinx)dx

Question Number 57490    Answers: 1   Comments: 2

1)findF(a)= ∫_0 ^∞ ((cos(ln(2+x^2 )))/(a^2 +x^2 ))dx witha>0 2) find the value of ∫_0 ^∞ ((cos(ln(2+x^2 )))/(4+x^2 ))dx.

1)findF(a)=0cos(ln(2+x2))a2+x2dxwitha>02)findthevalueof0cos(ln(2+x2))4+x2dx.

Question Number 57487    Answers: 0   Comments: 1

calculate lim_(x→1) ∫_x ^x^2 ((arctan(t))/(sint))dt .

calculatelimx1xx2arctan(t)sintdt.

Question Number 57423    Answers: 0   Comments: 0

let A_n =∫_0 ^∞ (dt/((e^t +e^(−t) )^n )) calculate A_n interms of n

letAn=0dt(et+et)ncalculateAnintermsofn

Question Number 57421    Answers: 1   Comments: 0

calculate ∫_(−1) ^1 (((x^4 +x^2 +1)^2 +e^x )/(e^x +1))dx

calculate11(x4+x2+1)2+exex+1dx

Question Number 57420    Answers: 0   Comments: 1

let J(x)=∫_0 ^x (t^2 /((√(t+1)) +(√(t+4))))dt find a explicit form of J(x)

letJ(x)=0xt2t+1+t+4dtfindaexplicitformofJ(x)

Question Number 57419    Answers: 0   Comments: 1

find ∫_0 ^1 (x+1) ln(x+(√(1+x^2 )))dx

find01(x+1)ln(x+1+x2)dx

Question Number 57418    Answers: 0   Comments: 1

calculate ∫_(−1) ^4 ((∣x−1∣+∣x−2∣)/(∣x^2 −9∣ +x^2 +16))dx

calculate14x1+x2x29+x2+16dx

Question Number 57417    Answers: 0   Comments: 2

let F(x) =∫_0 ^x ((1+sint)/(2+cost))dt 1) find a explicite form of f(x) 2) calculate ∫_0 ^π ((1+sint)/(2+cost))dt

letF(x)=0x1+sint2+costdt1)findaexpliciteformoff(x)2)calculate0π1+sint2+costdt

Question Number 57388    Answers: 0   Comments: 0

Given f(x) = f(x + 2016), ∀x ∈ R If ∫_0 ^3 f(x) = 30, then ∫_3 ^5 f(x + 2016) = ...

Givenf(x)=f(x+2016),xRIf30f(x)=30,then53f(x+2016)=...

Question Number 57385    Answers: 1   Comments: 1

Question Number 57325    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) ((ln(1+sinx))/(sinx))dx

calculate0π2ln(1+sinx)sinxdx

Question Number 57324    Answers: 0   Comments: 0

we want to find the vslue of I =∫_0 ^1 ((ln(1+x))/(1+x^2 )) dx let A=∫∫_W (x/((1+x^2 )(1+xy)))dxdy with W=[0,1]^2 calculate A by two method and conclude the value of I .

wewanttofindthevslueofI=01ln(1+x)1+x2dxletA=Wx(1+x2)(1+xy)dxdywithW=[0,1]2calculateAbytwomethodandconcludethevalueofI.

Question Number 57323    Answers: 0   Comments: 1

calculate ∫∫_D ((x+y)/(3+(√(x^2 +y^2 ))))dxdy with D={(x,y)∈R^2 /x^2 +y^2 ≤2 and x≥0 ,y≥0}

calculateDx+y3+x2+y2dxdywithD={(x,y)R2/x2+y22andx0,y0}

Question Number 57321    Answers: 1   Comments: 1

calculate ∫∫_D (x−y)(√(x^2 +y^2 ))dxdy with D ={ (x,y)∈R^2 /x^2 +y^2 ≤2 and x≥0}

calculateD(xy)x2+y2dxdywithD={(x,y)R2/x2+y22andx0}

Question Number 57320    Answers: 1   Comments: 1

calculate ∫∫_D xy e^(−x^2 −y^2 ) dxdy with D={(x,y)∈R^2 / 0≤x≤2 and 1≤y≤3}

calculateDxyex2y2dxdywithD={(x,y)R2/0x2and1y3}

Question Number 57319    Answers: 1   Comments: 1

calculate ∫∫_D e^(x−y) dxdy with D={(x,y)∈R^2 /∣x∣<1 and 0≤y≤1}

calculateDexydxdywithD={(x,y)R2/x∣<1and0y1}

Question Number 57228    Answers: 0   Comments: 1

find f(x) =∫_1 ^2 ((ln(1+xt))/t^2 ) dt with x>0

findf(x)=12ln(1+xt)t2dtwithx>0

Question Number 57227    Answers: 0   Comments: 0

let f(α)=∫_0 ^1 ((arctan(αx))/(1+αx^2 )) dx with α real 1) find f(α) interms of α 2) find the values of ∫_0 ^1 ((arctan(2x))/(1+2x^2 )) dx and ∫_0 ^1 ((arctan(4x))/(1+4x^2 ))dx

letf(α)=01arctan(αx)1+αx2dxwithαreal1)findf(α)intermsofα2)findthevaluesof01arctan(2x)1+2x2dxand01arctan(4x)1+4x2dx

Question Number 57226    Answers: 0   Comments: 0

calculate A_n =∫_0 ^1 x^n (√((1−x)/(1+x)))dx with n integr natural

calculateAn=01xn1x1+xdxwithnintegrnatural

Question Number 57224    Answers: 1   Comments: 1

find the value of ∫_0 ^1 ((3t^2 −5t +1)/((t+1)(t+2)(2t+3)))dt

findthevalueof013t25t+1(t+1)(t+2)(2t+3)dt

  Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com